【題目】已知函數(shù) 恰有兩個(gè)極值點(diǎn),且.
(1)求實(shí)數(shù) 的取值范圍;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)求導(dǎo),將問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)存在零點(diǎn)問(wèn)題,再利用導(dǎo)數(shù)的符號(hào)確定函數(shù)的單調(diào)性和極值,再利用極值的符號(hào)確定零點(diǎn)的個(gè)數(shù);(2)兩式相減,合理等價(jià)轉(zhuǎn)化,再構(gòu)造函數(shù),再利用導(dǎo)數(shù)的符號(hào)變換確定函數(shù)的單調(diào)性和最值.
試題解析: (1) ,依題意得為方程的兩不等正實(shí)數(shù)根, ,令.當(dāng)時(shí), ;當(dāng)時(shí), , 在 上單調(diào)遞增,在上單調(diào)遞減,且, ,當(dāng)時(shí), ,解得,故實(shí)數(shù) 的取值范圍是.
(2)由(1)得, 兩式相減得,
,
,令,即,令,則需滿(mǎn)足在上恒成立, ,令,則.
①當(dāng)時(shí), 上單調(diào)遞減, 在上單調(diào)遞增 , , 符合題意 ; ②當(dāng)時(shí), 上單調(diào)遞增, 在上單調(diào)遞減, , 不符合題意;③當(dāng)時(shí), 在 上單調(diào)遞增, 在上單調(diào)遞減, , 不符合題意,綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=x+ ﹣2.
(1)證明:函數(shù)g(x)在[ ,+∞)上是增函數(shù);
(2)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)設(shè),求的最小值;
(2)若曲線(xiàn)與僅有一個(gè)交點(diǎn),證明:曲線(xiàn)與在點(diǎn)處有相同的切線(xiàn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓: 的離心率與雙曲線(xiàn)的離心率互為倒數(shù),且橢圓的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)交橢圓于, 兩點(diǎn), ()為橢圓上一點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a+a﹣1= (a>1)
(1)求下列各式的值:
(Ⅰ)a +a ;
(Ⅱ)a +a ;
(2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)給出的一個(gè)取值,使得曲線(xiàn)存在斜率為的切線(xiàn),并說(shuō)明理由;
(Ⅱ)若存在極小值和極大值,證明: 的極小值大于極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 , 是坐標(biāo)原點(diǎn), 分別為其左右焦點(diǎn), , 是橢圓上一點(diǎn), 的最大值為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(xiàn)與橢圓交于兩點(diǎn),且
(i)求證: 為定值;
(ii)求面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com