A. | (2$\sqrt{2}$,2$\sqrt{3}$) | B. | ($\sqrt{2}$,$\sqrt{3}$) | C. | ($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$) | D. | [2$\sqrt{2}$,2$\sqrt{3}$] |
分析 根據(jù)正弦定理和A=2B及二倍角的正弦公式化簡(jiǎn)得到BC=4cosB,根據(jù)銳角△ABC和A=2B求出B的范圍,即可得到結(jié)論.
解答 解:∵△ABC是銳角三角形,C為銳角,
∴A+B≥$\frac{π}{2}$,由A=2B得到B+2B>$\frac{π}{2}$,且A=2B<$\frac{π}{2}$,
解得:$\frac{π}{6}$<B<$\frac{π}{4}$,
∴$\frac{\sqrt{2}}{2}$<cosB<$\frac{\sqrt{3}}{2}$,
根據(jù)正弦定理$\frac{AC}{sinB}$=$\frac{BC}{sinA}$,A=2B,
得到$\frac{AC}{sinB}=\frac{BC}{sinA}=\frac{BC}{2sinBcosB}$,
即BC=4cosB∈(2$\sqrt{2}$,2$\sqrt{3}$),
則BC的取值范圍為(2$\sqrt{2}$,2$\sqrt{3}$).
故選:A.
點(diǎn)評(píng) 本題主要考查考查了正弦定理,以及二倍角的正弦公式化簡(jiǎn)求值,利用正弦定理是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com