8.如圖所示,正四棱錐P-ABCD中,O為底面正方形的中心,側(cè)棱PA與底面ABCD所成的角的正切值為$\frac{{\sqrt{6}}}{2}$,若E是PB的中點(diǎn),則異面直線PD與AE所成角的正切值為(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{10}}}{5}$

分析AD中點(diǎn)M,連接MOPM,連接AEOE,由OEPD,知∠OEA為異面直線PDAE所成的角.由此能求出異面直線PD與AE所成角的正切值.

解答 解:取AD中點(diǎn)M,連接MO,PM,依條件可知ADMO,ADPO,∵PO⊥面ABCD,
∴∠PAO為側(cè)棱PA與底面ABCD所成的角.
∵側(cè)棱PA與底面ABCD所成的角的正切值為$\frac{{\sqrt{6}}}{2}$,∴tan∠PAO=$\frac{\sqrt{6}}{2}$.
設(shè)AB=a,則AO=$\frac{\sqrt{2}}{2}$a
PO=AO•tan∠POA=$\frac{\sqrt{3}}{2}a$a,
連接AEOE,∵OEPD,∴∠OEA為異面直線PDAE所成的角.
AOBDAOPO,∴AO⊥平面PBD.又OE?平面PBD,∴AOOE
OE=$\frac{1}{2}$PD=$\frac{1}{2}\sqrt{P{O}^{2}+D{O}^{2}}$=$\frac{5}{4}$a
∴tan∠AEO=$\frac{AO}{EO}$=$\frac{2\sqrt{10}}{5}$.
故選:A.

點(diǎn)評 本題考查異面直線所成角的正切值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若圓的方程為${(x+\frac{k}{2})^2}+{(y+1)^2}=1-\frac{3}{4}{k^2}$,則當(dāng)圓的面積最大時(shí),圓心坐標(biāo)和半徑分別為(0,-1)、1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合M是同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)f(x)的全體
①函數(shù)f(x)在其定義域上是單調(diào)函數(shù);②f(x)的定義域內(nèi)存在區(qū)間[a,b],使得f(x)在[a,b]上的值域?yàn)閇$\frac{a}{2},\frac{2}$].
(1)判斷g(x)=x3是否屬于M,若是,求出所有滿足②的區(qū)間[a,b],若不是,說明理由;
(2)若$h(x)=\sqrt{x-1}+t∈M$,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.兩條平行線3x+4y-12=0與ax+8y-4=0之間的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合P={x|$\int_0^x{({3{t^2}-10t+6})}dt$=0},則集合P的所有子集個(gè)數(shù)是( 。
A.2B.3C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(1-2x)=4x2+2x,則f(3)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對于實(shí)數(shù)a和b,定義運(yùn)算a*b,運(yùn)算原理如圖所示,則式子($\frac{1}{2}$)-2*lne3的值為( 。
A.8B.15C.16D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$f(x)=\frac{{\sqrt{2x-1}}}{x}$的定義域?yàn)閇$\frac{1}{2}$,+∞),值域?yàn)閇0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知方程$\frac{1}{2}$x2=|2x+a|有四個(gè)不同的解,則實(shí)數(shù)a的取值范圍是-2<a<2且a≠0.

查看答案和解析>>

同步練習(xí)冊答案