16.命題“?x∈R,2x2+x-1≤0”的否定為(  )
A.?x∈R,2x2+x-1≥0B.?x0∈R,2x02+x0-1>0
C.?x∈R,2x2+x-1≠0D.?x0∈R,2x02+x0-1≤0

分析 直接利用全稱命題的否定是特稱命題寫(xiě)出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,所以,命題“?x∈R,2x2+x-1≤0”的否定為:?x0∈R,2x02+x0-1>0.
故選:B.

點(diǎn)評(píng) 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知a>0,函數(shù)f(x)=ax3-3x+1,x∈[-1,1],求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.比較大小:a2+3ab>4ab-b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知全集U={1,3,5,7},集合A={1,3},B={5,3},則∁U(A∩B)=( 。
A.{1,5,7}B.{1,3,5}C.3{}D.{7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知O、A、B、C為同一平面內(nèi)的四個(gè)點(diǎn),若2$\overrightarrow{AC}$+$\overrightarrow{CB}$=$\overrightarrow{0}$,則向量$\overrightarrow{OC}$等于( 。
A.$\frac{2}{3}$$\overrightarrow{OA}$-$\frac{1}{3}$$\overrightarrow{OB}$B.-$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$C.2$\overrightarrow{OA}$-$\overrightarrow{OB}$D.-$\overrightarrow{OA}$-2$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知△ABC的面積為2,且滿足0<$\overrightarrow{AB}$$•\overrightarrow{AC}$≤4,設(shè)$\overrightarrow{AB}$和$\overrightarrow{AC}$的夾角為θ
(1)求tanθ的取值范圍
(2)求函數(shù)f(θ)=2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.復(fù)數(shù)$\frac{1}{-2+i}$的虛部是( 。
A.-$\frac{1}{5}$iB.-$\frac{1}{5}$C.$\frac{1}{5}$iD.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若△ABC外接圓的圓心為O,半徑為4,$\overrightarrow{OA}$+2$\overrightarrow{AB}$+2$\overrightarrow{AC}$=$\overrightarrow{0}$,則$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為( 。
A.1B.$\sqrt{7}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若c2=a2+b2+2abcosC,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案