18.某公路設(shè)計(jì)院有工程師6人,技術(shù)員12人,技工18人,要從這此人中抽取n個(gè)人參加市里召開(kāi)的科學(xué)技術(shù)大會(huì).如果采用系統(tǒng)抽樣法和分層抽樣的方法抽取,不用剔除個(gè)體;如果參會(huì)人數(shù)增加1個(gè),則在采用系統(tǒng)抽樣時(shí),需要在總體中先剔除1個(gè)個(gè)體,求n.

分析 當(dāng)樣本容量是n時(shí),系統(tǒng)抽樣的間隔為$\frac{36}{n}$,由題意知n=6,12,18.當(dāng)樣本容量為(n+1)時(shí),總體容量是35人,系統(tǒng)抽樣的間隔為 n+1,由此能求出樣本容量.

解答 解:由題意知采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個(gè)體;
如果樣本容量增加一個(gè),則在采用系統(tǒng)抽樣時(shí),
需要在總體中先剔除1個(gè)個(gè)體,
∵總體容量為6+12+18=36.
當(dāng)樣本容量是n時(shí),由題意知,系統(tǒng)抽樣的間隔為$\frac{36}{n}$,
分層抽樣比例為$\frac{n}{36}$,抽取的工程師人數(shù)為$\frac{n}{36}×6=\frac{n}{6}$,
 由題意知采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個(gè)體;
如果樣本容量增加一個(gè),則在采用系統(tǒng)抽樣時(shí),
需要在總體中先剔除1個(gè)個(gè)體,
∵總體容量為6+12+18=36.
當(dāng)樣本容量是n時(shí),由題意知,系統(tǒng)抽樣的間隔為 技術(shù)員人數(shù)為$\frac{n}{36}•12$=$\frac{n}{3}$,
技工人數(shù)為$\frac{n}{36}•18$=$\frac{n}{2}$,
∵n應(yīng)是6的倍數(shù),36的約數(shù),
即n=6,12,18.
當(dāng)樣本容量為(n+1)時(shí),總體容量是35人,
系統(tǒng)抽樣的間隔為 n+1,∵$\frac{35}{n+1}$必須是整數(shù),
∴n只能取6.即樣本容量n=6.

點(diǎn)評(píng) 本題考查樣本容量的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意系統(tǒng)抽樣和分層抽樣的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知復(fù)數(shù)z滿(mǎn)足$\frac{z-1}{z+1}=i$,則z等于(  )
A.1+iB.1-iC.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在下面的四個(gè)平面圖形中,哪幾個(gè)是側(cè)棱都相等的四面體的展開(kāi)圖①②(填序號(hào))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.試說(shuō)明y=sin2x與y=sin2x的圖象之間有什么樣的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=loga2(x2-2x-3),當(dāng)x<-1時(shí)為增函數(shù),則a的取值范圍是( 。
A.a>1B.-1<a<1C.-1<a<1且a≠0D.a>1或a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在周長(zhǎng)為60πcm的圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B、C、D在圓周上.
(Ⅰ)怎樣截取才能使截得的矩形ABCD的面積最大?并求最大面積;
(Ⅱ)若將所截得的矩形鋁皮ABCD卷成一個(gè)以AD為母線(xiàn)的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),應(yīng)怎樣截取,才能使做出的圓柱形罐子體積最大?并求最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知圓F的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)O為圓心的圓O與圓F相切.
(1)求圓O的方程;
(2)若圓O上有兩點(diǎn)M,N關(guān)于直線(xiàn)x+2y=0對(duì)稱(chēng),且|$\overrightarrow{MN}$|=2$\sqrt{3}$,試求直線(xiàn)MN的方程;
(3)若滿(mǎn)足(2)的圓O與x軸相交于A,B兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)P使得|$\overrightarrow{PA}$|,|$\overrightarrow{PO}$|,|$\overrightarrow{PB}$|成等比數(shù)列,試求$\overrightarrow{PA}•$$\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿(mǎn)足|$\overrightarrow$|=2,$\overrightarrow$⊥(2$\overrightarrow{a}$-$\overrightarrow$),求|t$\overrightarrow$+(1-2t)$\overrightarrow{a}$|(t∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知某種動(dòng)物服用某種藥物一次后當(dāng)天出現(xiàn)A癥狀的概率為$\frac{1}{3}$.為了研究連續(xù)服用該藥物后出現(xiàn)A癥狀的情況,做藥物試驗(yàn).試驗(yàn)設(shè)計(jì)為每天用藥一次,連續(xù)用藥四天為一個(gè)用藥周期.假設(shè)每次用藥后當(dāng)天是否出現(xiàn)A癥狀的出現(xiàn)與上次用藥無(wú)關(guān).
(Ⅰ)如果出現(xiàn)A癥狀即停止試驗(yàn)”,求試驗(yàn)至多持續(xù)一個(gè)用藥周期的概率;
(Ⅱ)如果在一個(gè)用藥周期內(nèi)出現(xiàn)3次或4次A癥狀,則這個(gè)用藥周期結(jié)束后終止試驗(yàn),試驗(yàn)至多持續(xù)兩個(gè)周期.設(shè)藥物試驗(yàn)持續(xù)的用藥周期數(shù)為η,求η的期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案