8.已知復(fù)數(shù)z滿足$\frac{z-1}{z+1}=i$,則z等于( 。
A.1+iB.1-iC.iD.-i

分析 利用復(fù)數(shù)的運算法則即可得出.

解答 解:復(fù)數(shù)z滿足$\frac{z-1}{z+1}=i$,∴z=$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i,
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,已知圓M經(jīng)過點A(1,0),B(3,0),C(0,1).
(1)求圓M的方程;
(2)若直線l“mx-2y-(2m+1)=0與圓M交于點P,Q,且$\overrightarrow{MP}$•$\overrightarrow{MQ}$=0,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出的S的值為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若直線l1:y=x+a和直線l2:y=x+b將圓(x-1)2+(y-2)2=8分成長度相等的四段弧,則a2+b2=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=e|x|-$\frac{1}{{x}^{2}}$,設(shè)a=sin2,b=cos2,c=tan2,則(  )
A.f(a)<f(b)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=x3-ax2+x-1在點(1,f (1))的切線與直線x+2y-3=0垂直,則實數(shù)a等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.命題:“?x∈Q,x2-8=0”的否定是?x∈Q,x2-8≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點M是圓C:(x-1)2+(y-4)2=1上的點,不等式組$\left\{\begin{array}{l}{x+2y+4≥0}\\{x+4y≤0}\\{x+(a-1)y+2(a-1)≤0}\\{\;}\end{array}\right.$(a≠1)表示的平面區(qū)域為Ω,點P是Ω上一點,若|PM|的最小值為$\sqrt{17}$-1,則實數(shù)a的取值范圍為(  )
A.(-∞,1)B.(-3,1)C.(1,+∞)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某公路設(shè)計院有工程師6人,技術(shù)員12人,技工18人,要從這此人中抽取n個人參加市里召開的科學(xué)技術(shù)大會.如果采用系統(tǒng)抽樣法和分層抽樣的方法抽取,不用剔除個體;如果參會人數(shù)增加1個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體,求n.

查看答案和解析>>

同步練習(xí)冊答案