10.設(shè)a>0,b>0若$\sqrt{{3}^{5}}$是3a與3b的等比中項,則$\frac{1}{a}+\frac{1}$的最小值為( 。
A.$\frac{8}{3}$B.$\frac{4}{5}$C.4D.$\frac{1}{4}$

分析 利用等比數(shù)列的性質(zhì)可得a+b=5.再利用基本不等式的性質(zhì)即可得出.

解答 解:∵a>0,b>0,$\sqrt{{3}^{5}}$是3a與3b的等比中項,
∴${3}^{a}•{3}^=(\sqrt{{3}^{5}})^{2}$=35
化為a+b=5.
則$\frac{1}{a}+\frac{1}$=$\frac{1}{5}(a+b)$$(\frac{1}{a}+\frac{1})$=$\frac{1}{5}(2+\frac{a}+\frac{a})$$≥\frac{1}{5}$$(2+2\sqrt{\frac{a}•\frac{a}})$=$\frac{4}{5}$,當(dāng)且僅當(dāng)a=b=$\frac{5}{2}$時取等號.
故選:B.

點評 本題考查了等比數(shù)列的性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知P,A,B,C是平面內(nèi)四點,且$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AC}$,則以下一定共線的是( 。
A.$\overrightarrow{PC}$與$\overrightarrow{PB}$B.$\overrightarrow{PA}$與$\overrightarrow{PB}$C.$\overrightarrow{PA}$與$\overrightarrow{PC}$D.$\overrightarrow{PC}$與$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,$AB=\sqrt{2},AF=1$.P為線段EF上一點.
(I)若P為EF的中點,求證:AP⊥DF;
(Ⅱ)是否存在點P,使直線AP與平面BDF所成的角為$\frac{π}{3}$?若存在,確定P點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)y2=4px(p>0)上橫坐標(biāo)為6的點到焦點的距離為10,則拋物線的解析式y(tǒng)2=16x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},
求A∩B,(CUA)∩(CUB),(A∩B)∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是(  )
A.f(x)=-$\sqrt{x+1}$B.f(x)=${(\frac{1}{2})}^{x}$C.f(x)=lnx+2D.f(x)=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列敘述中,正確的個數(shù)是( 。
①命題p:“?x∈R,x2-2≥0”的否定形式為¬p:“?x∈R,x2-2<0”;
②O是△ABC所在平面上一點,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$,則O是△ABC的垂心;
③“M>N”是“($\frac{2}{3}$)M>($\frac{2}{3}$)N”的充分不必要條件;
④命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x=27,y=64.化簡并計算$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線Ax+3y+C=0與直線2x-3y+4=0的交點在y軸上,則C的值為-4.

查看答案和解析>>

同步練習(xí)冊答案