15.三個(gè)實(shí)數(shù)成等差數(shù)列,首項(xiàng)是9,若將第二項(xiàng)加2、第三項(xiàng)加20可使得這三個(gè)數(shù)依次構(gòu)成等比數(shù)列{an},則a3的所有取值中的最小值是( 。
A.1B.4C.36D.49

分析 設(shè)首項(xiàng)為9的等差數(shù)列分別為9,9+d,9+2d,則(11+d)2=9(29+2d),由此能求出a3的所有可能取值中最小值.

解答 解:設(shè)首項(xiàng)為9的等差數(shù)列分別為9,9+d,9+2d,
其中d為公差,又9,11+d,29+2d成等比數(shù)列,
則(11+d)2=9(29+2d),解得d=-14或d=10,
當(dāng)d=-14時(shí),數(shù)列{an}的三項(xiàng)依次為9,-3,1;
當(dāng)d=10時(shí),數(shù)列{an}的三項(xiàng)依次為9,21,49.
故a3的所有可能取值中最小的是1,
故選:A.

點(diǎn)評 本題考查數(shù)列中第三項(xiàng)的最小值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有6名同學(xué)參加甲、乙、丙3項(xiàng)課外活動(dòng),每位同學(xué)必須參加一項(xiàng)活動(dòng)不能同時(shí)參加兩項(xiàng),且每項(xiàng)活動(dòng)都要有人參加,其中甲活動(dòng)最多安排2人,則不同的安排方法有(  )種.
A.320B.360C.384D.390

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)α∈($\frac{π}{2}$,π),且tanα=-2,則sinα=$\frac{2\sqrt{5}}{5}$,cosα=$-\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線x-3y+2=0不經(jīng)過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,AB=5,AC=7,BC=8,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,若(a+b+c)(b+c-a)=bc,且sinA=2sinBcosC,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某城市居民月生活用水收費(fèi)標(biāo)準(zhǔn)為$W(t)=\left\{{\begin{array}{l}{1.6t,({0≤t<2})}\\{2.7t,({2≤t<3.5})}\\{4.0t,({3.5≤t≤4.5})}\end{array}}\right.$(t為用水量,單位:噸;W為水費(fèi),單位:元),從該市抽取100戶居民的月均用水量的頻率分布直方圖如圖所示. 

(Ⅰ)求這100戶居民月均用水量的中位數(shù)及平均水費(fèi);
(Ⅱ)連續(xù)10個(gè)月,每月從這100戶中隨機(jī)抽取一戶,若抽到的用戶當(dāng)月所交水費(fèi)少于9.45元,則對其予以獎(jiǎng)勵(lì).設(shè)X為獲獎(jiǎng)戶數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,AB=4,AC=6,∠BAC=60°.點(diǎn)A在邊BC上的投影為點(diǎn)D.
(1)試求線段AD的長度;
(2)設(shè)點(diǎn)D在邊AB上的投影為點(diǎn)E,在邊AC上的投影為F,試求線段EF的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=Asin(2x+φ),其中A>0.
(1)若?x∈R,使f(x+a)-f(x)=2A成立,則實(shí)數(shù)a的最小值是$\frac{π}{2}$;
(2)若A=1,則f(x+$\frac{π}{6}$)-f(x)的最大值為1.

查看答案和解析>>

同步練習(xí)冊答案