13.在△ABC中,若a2-c2+b2+$\sqrt{2}$ab=0,則∠C=$\frac{3π}{4}$.

分析 由已知的式子和余弦定理的推論可求出cosC,再由內(nèi)角的范圍求出角C.

解答 解:由題意得,a2-c2+b2+$\sqrt{2}$ab=0,則a2-c2+b2=-$\sqrt{2}$ab,
由余弦定理得,cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$-\frac{\sqrt{2}}{2}$,
又0<C<π,所以∠C=$\frac{3π}{4}$,
故答案為:$\frac{3π}{4}$.

點(diǎn)評(píng) 本題考查了余弦定理推論的應(yīng)用,注意三角形內(nèi)角的范圍,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥1\\{x^2}+{y^2}≤1\end{array}\right.$,則2x+y的取值范圍是( 。
A.[1,2]B.[1,+∞)C.$(0,\sqrt{5}]$D.$[1,\sqrt{5}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位,圓O1的方程為ρ=4cosθ,圓O2的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=-2+2sinθ}\end{array}\right.$(θ為參數(shù)),
(1)求兩圓的一般方程.
(2)求兩圓的公共弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若G是△ABC的重心,且$a\overrightarrow{G{A}}+b\overrightarrow{G{B}}+\frac{{\sqrt{3}}}{3}c\overrightarrow{GC}=\vec 0$,則角A=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.不等式$\frac{2x-1}{x}<1$的解集為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某家電產(chǎn)品受在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每件的利潤(rùn)與該產(chǎn)品首次出現(xiàn)故障的時(shí)間有關(guān).某廠家生產(chǎn)甲、乙兩種品牌,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌家電中各隨機(jī)抽取50件,統(tǒng)計(jì)數(shù)據(jù)如下:
品牌
首次出現(xiàn)故障時(shí)間x(年)0<x≤11<x≤2x>20<x≤2x>2
數(shù)量(件)2345545
每件利潤(rùn)(百元)1231.82.9
將頻率視為概率,解答下列問(wèn)題:
(Ⅰ)從該廠生產(chǎn)的甲、乙品牌產(chǎn)品中隨機(jī)各抽取一件,求其至少有一件首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(Ⅱ)若該廠生產(chǎn)的家電均能售出,記生產(chǎn)一件甲品牌的利潤(rùn)為X1,生產(chǎn)一件乙品牌家電的利潤(rùn)為X2,分別求X1,X2的分布列;
(Ⅲ)該廠預(yù)計(jì)今后這兩種品牌家電銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的家電.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的家電?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.當(dāng)-1<m<1時(shí),復(fù)數(shù)z=$\frac{-1+i}{m+i}$(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,且滿足$\sqrt{2}$acosB=bcosC+ccosB,則角B的大小為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的點(diǎn)到它的兩個(gè)焦點(diǎn)的距離之和為4,以橢圓C的短軸為直徑的圓O經(jīng)過(guò)這兩個(gè)焦點(diǎn),點(diǎn)A,B分別是橢圓C的左、右頂點(diǎn).
(Ⅰ)求圓O和橢圓C的方程;
(Ⅱ)已知P,Q分別是橢圓C和圓O上的動(dòng)點(diǎn)(P,Q位于y軸兩側(cè)),且直線PQ與x軸平行,直線AP,BP分別與y軸交于點(diǎn)M,N.求證:∠MQN為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案