4.已知a,b∈R,則“a>0,b>0”是“a2+b2≥2ab”的(  )
A.既不充分也不要條件B.充分不必要條件
C.必要不充分條件D.充分必要條件

分析 a2+b2≥2ab?(a-b)2≥0,即可判斷出結(jié)論.

解答 解:a2+b2≥2ab?(a-b)2≥0,
因此“a>0,b>0”是“a2+b2≥2ab”的充分不必要條件.
故選:B.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì)、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.銳角三角形ABC中,a、b、c分別是三內(nèi)角A、B、C的對(duì)邊,設(shè)B=2A,則$\frac{a}$的取值范圍是($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若復(fù)數(shù)z滿足iz=2-4i,則$\overline{z}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是( 。
A.(2,4)B.(2,-4)C.(-4,-2)D.(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C對(duì)應(yīng)的邊長(zhǎng)分別為a,b,c,且滿足c(acosB-$\frac{1}{2}$b)=a2-b2
(Ⅰ)求角A;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c,則數(shù)列{an}是等差數(shù)列的充要條件為( 。
A.a≠0,c=0B.a=0,c=0C.c=0D.c≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=x3-ax2+4,若f(x)的圖象與x軸正半軸有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(1,+∞)B.($\frac{3}{2}$,+∞)C.(2,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某高校進(jìn)行自主招生測(cè)試,對(duì)20名已經(jīng)選拔入圍的學(xué)生進(jìn)行語(yǔ)言能力和邏輯思維能力的測(cè)試,其測(cè)試結(jié)果對(duì)應(yīng)人數(shù)如下表:
邏輯思維能力
語(yǔ)言表達(dá)能力
一般良好優(yōu)秀
一般22m
良好441
優(yōu)秀1m2
例如表中語(yǔ)言表達(dá)能力良好且邏輯思維能力一般的學(xué)生是4人,由于部分?jǐn)?shù)據(jù)丟失,只知道從這20名參加測(cè)試的學(xué)生中隨機(jī)選取1名,選到語(yǔ)言表達(dá)能力一般的學(xué)生的概率為$\frac{1}{4}$.
(Ⅰ)求m,n的值;
(Ⅱ)從語(yǔ)言表達(dá)能力為優(yōu)秀的學(xué)生中隨機(jī)選取2名,求其中至少有1名邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,滿足acosB+bcosA=2ccosC.
(1)求C;
(2)若△ABC的面積為2$\sqrt{3}$,a+b=6,求∠ACB的角平分線CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知α,β∈(0,π),cosα=$\frac{12}{13}$,cos(α+β)=$\frac{3}{5}$,則cosβ=$\frac{56}{65}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案