13.計算:sin65°cos35°-sin25°sin35°=$\frac{1}{2}$.

分析 由條件利用誘導公式、兩角而和的余弦公式,求得所給式子的值.

解答 解:sin65°cos35°-sin25°sin35°=cos25°cos35°-sin25°sin35°=cos(25°+35°)=cos60°=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點評 本題主要考查誘導公式、兩角而和的余弦公式的應用,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{1}{2}$x,則雙曲線的離心率為( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知等比數(shù)列{an}滿足an+1+an=10•4n-1(n∈N*),數(shù)列{bn}的前n項和為Sn,且bn=log2an
(I)求bn,Sn;
(Ⅱ)設${c_n}={b_n}•({\frac{{2{S_n}}}{n}+1})$,求數(shù)列$\left\{{{a_n}+\frac{1}{c_n}}\right\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2AB,E,F(xiàn)是線段BC,AB的中點.
(Ⅰ)證明:ED⊥PE;
(Ⅱ)在線段PA上確定點G,使得FG∥平面PED,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知田徑隊有男運動員56人,女運動員42人,若按男女比例用分層抽樣的方法,從全體運動員中抽出14人參加比賽,則抽到女運動員的人數(shù)為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和為Sn,且3Sn+an-3=0,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=$\frac{1}{2}$log2(1-Sn+1),求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年山西忻州一中高一上學期新生摸底數(shù)學試卷(解析版) 題型:解答題

如圖,在中,,點上,以為半徑的于點,的垂直平分線交于點,交于點,連接

(1)判斷直線的位置關(guān)系,并說明理由;

(2)若,,,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且與y軸正半軸的交點為(0,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與C交于A、B兩點,AB=2,求△AOB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知一批產(chǎn)品的次品率為P=0.12,從中任取5件,求取得各次品數(shù)的概率.

查看答案和解析>>

同步練習冊答案