20.A?B?C三點(diǎn)在同一球面上,∠BAC=135°,BC=4,且球心O到平面ABC的距離為1,則此球O的體積為36π.

分析 根據(jù)三角形得出2r=$\frac{BC}{sin∠BAC}$,R2=r2+d2,得出R=3,根據(jù)球的體積公式求解即可.

解答 解;∵在△ABC的中,∠BAC=135°,BC=4
∴根據(jù)正弦定理得出:2r=$\frac{BC}{sin∠BAC}$=$\frac{4}{\frac{\sqrt{2}}{2}}$=4$\sqrt{2}$,
即r=2$\sqrt{2}$
∵R2=r2+d2,d=1,
∴R=3,
∴此球O的體積為$\frac{4}{3}$×π×33=36π
故答案為:36π

點(diǎn)評(píng) 本題考查了球的幾何性質(zhì),三角形的正弦定理的運(yùn)用,屬于綜合性較強(qiáng)的題目,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A=$\{\left.z\right|bi•\overline z-bi•z+2=0,b∈R,z∈C\}$,B={z||z|=1,z∈C},若A∩B=∅,則b的取值范圍是( 。
A.(-1,1)B.[-1,1]C.(-1,0)∪(0,1)D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合U={1,2,3,4,5},A={1,2,3},B={2,4},則A∩(∁UB)=(  )
A.{2,4}B.{1,3}C.{1,2,3,5}D.{2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.執(zhí)行如圖所示的程序框圖,如果輸入的t∈[-2,2],則輸出的S的取值范圍是[-3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合$\left\{\begin{array}{l}\\(x,y)\end{array}\right.\left|{\left\{\begin{array}{l}2x+y-6≤0\\ x+y≥0\\ x-y≥0\end{array}\right.}\right.\left.,\right\}$表示的平面區(qū)域?yàn)棣,若在區(qū)域Ω內(nèi)任取一點(diǎn)P(x,y)則點(diǎn)
P(x,y)的坐標(biāo)滿足不等式x2+y2≤4的概率為(  )
A.$\frac{π}{3}$B.$\frac{π}{12}$C.$\frac{π}{24}$D.$\frac{3π}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,直線l的方程為$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù)),以原點(diǎn)O為極點(diǎn),Ox軸為極軸,取相同的單位長(zhǎng)度,建立極坐標(biāo)系,曲線犆的方程為ρ=4cosθ.
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)A(2+2cosα,2sinα),$B(5\sqrt{2}+\frac{{\sqrt{2}}}{2}t,2-\frac{{\sqrt{2}}}{2}t)$,求|AB|的最小值.(其中α?t為參數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集為R,A={x$\frac{x-1}{x+1}$≤0},B={x|x>0},則∁R(A∩B)=(  )
A.(-∞,0]∪(1,+∞)B.(-∞,0][1,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.8+2$\sqrt{3}$B.8+8$\sqrt{3}$C.12+4$\sqrt{3}$D.16+4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項(xiàng)的和為Sn,非常數(shù)等比數(shù)列{bn}的公比是q,且滿足:a1=2,b1=1,S2=3b2,a2=b3
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=2bn-λ•${3}^{\frac{{a}_{n}}{2}}$,若數(shù)列{cn}是遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案