分析 根據(jù)三角形得出2r=$\frac{BC}{sin∠BAC}$,R2=r2+d2,得出R=3,根據(jù)球的體積公式求解即可.
解答 解;∵在△ABC的中,∠BAC=135°,BC=4
∴根據(jù)正弦定理得出:2r=$\frac{BC}{sin∠BAC}$=$\frac{4}{\frac{\sqrt{2}}{2}}$=4$\sqrt{2}$,
即r=2$\sqrt{2}$
∵R2=r2+d2,d=1,
∴R=3,
∴此球O的體積為$\frac{4}{3}$×π×33=36π
故答案為:36π
點(diǎn)評(píng) 本題考查了球的幾何性質(zhì),三角形的正弦定理的運(yùn)用,屬于綜合性較強(qiáng)的題目,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | [-1,1] | C. | (-1,0)∪(0,1) | D. | [-1,0)∪(0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4} | B. | {1,3} | C. | {1,2,3,5} | D. | {2,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{24}$ | D. | $\frac{3π}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0]∪(1,+∞) | B. | (-∞,0][1,+∞) | C. | (-∞,-1) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8+2$\sqrt{3}$ | B. | 8+8$\sqrt{3}$ | C. | 12+4$\sqrt{3}$ | D. | 16+4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com