分析 化簡f(x)=$\frac{{{{log}_2}x-1}}{{2{{log}_2}x+1}}$=$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{2lo{g}_{2}x+1}$;從而可得f(x1)+f(2x2)=$\frac{1}{2}$-$\frac{3}{2}$$\frac{1}{2lo{g}_{2}{x}_{1}+1}$+$\frac{1}{2}$-$\frac{3}{2}$$\frac{1}{2lo{g}_{2}2{x}_{2}+1}$=$\frac{1}{2}$,從而可得$\frac{1}{lo{g}_{2}(2{x}_{1}^{2})}$+$\frac{1}{lo{g}_{2}(8{x}_{2}^{2})}$=$\frac{1}{3}$;由不等式的性質(zhì)可得log2(x1x2)≥4;故f(x1x2)=$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{2log({x}_{1}{x}_{2})+1}$≥$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{9}$=$\frac{1}{3}$.
解答 解:f(x)=$\frac{{{{log}_2}x-1}}{{2{{log}_2}x+1}}$=$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{2lo{g}_{2}x+1}$;
f(x1)+f(2x2)=$\frac{1}{2}$-$\frac{3}{2}$$\frac{1}{2lo{g}_{2}{x}_{1}+1}$+$\frac{1}{2}$-$\frac{3}{2}$$\frac{1}{2lo{g}_{2}2{x}_{2}+1}$=$\frac{1}{2}$,
即$\frac{1}{2lo{g}_{2}{x}_{1}+1}$+$\frac{1}{2lo{g}_{2}2{x}_{2}+1}$=$\frac{1}{3}$;
即$\frac{1}{lo{g}_{2}(2{x}_{1}^{2})}$+$\frac{1}{lo{g}_{2}(8{x}_{2}^{2})}$=$\frac{1}{3}$;
∴$\frac{1}{3}$=$\frac{1}{lo{g}_{2}(2{x}_{1}^{2})}$+$\frac{1}{lo{g}_{2}(8{x}_{2}^{2})}$=$\frac{lo{g}_{2}(2{x}_{1}^{2})+lo{g}_{2}(8{x}_{2}^{2})}{lo{g}_{2}(2{x}_{1}^{2})lo{g}_{2}(8{x}_{2}^{2})}$≥$\frac{lo{g}_{2}(2{x}_{1}^{2})+lo{g}_{2}(8{x}_{2}^{2})}{(\frac{lo{g}_{2}(2{x}_{1}^{2})+lo{g}_{2}(8{x}_{2}^{2})}{2})^{2}}$=$\frac{4}{lo{g}_{2}(4{x}_{1}{x}_{2})^{2}}$;
∴l(xiāng)og2(4x1x2)2≥12;
∴l(xiāng)og2(x1x2)≥4;
f(x1x2)=$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{2log({x}_{1}{x}_{2})+1}$≥$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{9}$=$\frac{1}{3}$;
故答案為:$\frac{1}{3}$.
點(diǎn)評 本題考查了不等式的應(yīng)用及函數(shù)的單調(diào)性的應(yīng)用,化簡比較困難,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,3] | B. | [-1,3] | C. | {-3,3} | D. | [-1,-3,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com