分析 (Ⅰ)推導(dǎo)出VD⊥AB,VD=1,CD⊥AB,CD=1,從而AB⊥平面VCD,由此能證明平面VCD⊥平面ABC.
(Ⅱ)由AB⊥平面VCD,得三棱錐V-ABC的體積等于三棱錐A-VCD與B-VCD的體積之和,由此能求出三棱錐V-ABC的體積.
解答 證明:(Ⅰ)如圖所示:
∵VA=VB=2,AB=2$\sqrt{3}$,D為AB的中點(diǎn),
∴VD⊥AB,VD=$\sqrt{V{A}^{2}-A{D}^{2}}$=1.
同理CD⊥AB,CD=1,CD∩VD=D,∴AB⊥平面VCD.
又∵AB?平面ABC,∴平面VCD⊥平面ABC.
解:(Ⅱ)∵AB⊥平面VCD,
∴三棱錐V-ABC的體積等于三棱錐A-VCD與B-VCD的體積之和.
∵VC=VD=CD=1,
∴△VCD的面積為:
${S}_{△VCD}=\frac{1}{2}×VD×CD×sin∠VDC$=$\frac{1}{2}×1×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
∴三棱錐V-ABC的體積為:
VV-ABC=$\frac{1}{3}×{S}_{△VCD}×AB$=$\frac{1}{3}×\frac{\sqrt{3}}{4}×2\sqrt{3}$=$\frac{1}{2}$.
點(diǎn)評 本題考查面面垂直的證明,考查三棱錐的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力、推理論證能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 27 | B. | -27 | C. | 0 | D. | 37 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | ($\frac{\sqrt{2}}{2}$,1) | C. | [$\frac{\sqrt{2}}{2}$,1) | D. | (1,$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com