4.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PCD⊥底面ABCD(1)若M,N分別為PC,BD的中點,求證:MN∥平面PAD;
(2)求證:平面PAD⊥平面PCD;
(3)若PD=CD=$\frac{\sqrt{2}}{2}PC$,求四棱錐P-ABCD的體積.

分析 (1)如圖所示,連接AC,由底面ABCD是正方形,N是AC的中點,利用三角形的中位線定理可得:MN∥PA,再利用線面平行的判定定理可得MN∥平面PAD;
(2)利用線面垂直的性質(zhì)定理可得:AD⊥平面PCD,即可證明平面PAD⊥平面PCD;
(3)由PD=CD=$\frac{\sqrt{2}}{2}PC$,可得PD⊥CD,PD⊥平面ABCD.即可得出四棱錐P-ABCD的體積V=$\frac{1}{3}•PD•{S}_{正方形ABCD}$.

解答 (1)證明:如圖所示,連接AC,由底面ABCD是正方形,
∴N是AC的中點,
在△PAC中,又PM=MC,
∴MN∥PA,
又PA?平面PAD,MN?平面PAD,
∴MN∥平面PAD;
(2)證明:∵側(cè)面PCD⊥底面ABCD,側(cè)面PCD∩底面ABCD=CD,AD⊥DC,
∴AD⊥平面PCD,
又AD?平面PAD,
∴平面PAD⊥平面PCD;
(3)解:由PD=CD=$\frac{\sqrt{2}}{2}PC$,
∴PD2+CD2=PC2,
∴PD⊥CD,
平面PCD∩平面ABCD=CD,
∴PD⊥平面ABCD.
∴四棱錐P-ABCD的體積V=$\frac{1}{3}•PD•{S}_{正方形ABCD}$=$\frac{1}{3}×$2×22=$\frac{8}{3}$.

點評 本題考查了線面面面垂直的判定與性質(zhì)定理、線面平行的判定定理、四棱錐的體積計算公式、勾股定理的逆定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.直線l:$\left\{\begin{array}{l}{x=4t}\\{y=3t-2}\end{array}\right.$(t為參數(shù))被曲線C:$\left\{\begin{array}{l}{x=5+2cosθ}\\{y=3+2sinθ}\end{array}\right.$(θ為參數(shù))所截得的弦長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一個球與一個正三棱柱的三個側(cè)面和兩個底面都相切,已知這個球的體積是$\frac{4}{3}$π,則這個三棱柱的體積為6$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.體積為V的正方體,過不相鄰四頂點連成一個正四面體,則該正四面體的體積是( 。
A.$\frac{V}{2}$B.$\frac{V}{3}$C.$\frac{V}{4}$D.$\frac{V}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=(x-a)2+(lnx2-2a)2,其中x>0,a∈R,存在x0使得f(x0)$≤\frac{4}{5}$成立,則實數(shù)a值是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且滿足a1=1,an+1=2$\sqrt{{S}_{n}}$+1,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)是否存在正整數(shù)k,使ak,S2k-1,a4k成等比數(shù)列?若存在,求k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.異面直線a與b垂直,c與a成30°角,則c與b的成角范圍是[60°,90°].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知關(guān)于x的不等式|xlnx|≤-2x2+cx-$\frac{1}{2}$有解,則正整數(shù)c的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(x-x1)(x-x2)(x-x3),x1,x2,x3∈R,且x1<x2<x3
(1)當x1=0,x2=1,x3=2時,求函數(shù)f(x)的減區(qū)間;
(2)求證:方程f′(x)=0有兩個不相等的實數(shù)根;
(3)若方程f′(x)=0的兩個實數(shù)根是α,β(α<β),試比較$\frac{{x}_{1}+x{\;}_{2}}{2}$,$\frac{x{\;}_{2}+x{\;}_{3}}{2}$與α,β的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案