9.不等式-$\frac{1}{2}$x2+3x-5>0的解集是(  )
A.{x|x<-2}B.{x|x>5}C.{x|x>-2或x>5}D.

分析 把不等式-$\frac{1}{2}$x2+3x-5>0化為x2-6x+10<0,利用△<0得出原不等式無解.

解答 解:不等式-$\frac{1}{2}$x2+3x-5>0可化為
x2-6x+10<0
△=(-6)2-4×1×10=-4<0
∴原不等式無解,即解集是∅.
故選:D.

點(diǎn)評 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知四棱錐P-ABCD中,PA垂直于直角梯形ABCD所在的平面,BA⊥AD,BC∥AD,M是PC的中點(diǎn),且AB=AD=AP=2,BC=4.
(1)求證:DM∥平面PAB;
(2)求三棱錐M-PBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線y=x3-$\sqrt{3}x$+2上的任意一點(diǎn)P處切線的傾斜角的取值范圍是( 。
A.[$\frac{π}{3}$,$\frac{π}{2}$)B.[$\frac{2π}{3}$,π)C.[0,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$]D.[0,$\frac{π}{2}$)∪[$\frac{2π}{3}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.為了得到函數(shù)y=lg$\frac{x+3}{10}$的圖象,只需把函數(shù)y=lgx的圖象上所有的點(diǎn)(  )
A.向左平移3,向上平移1個(gè)單位B.向右平移3,向上平移1個(gè)單位
C.向左平移3,向下平移1個(gè)單位D.向右平移3,向下平移1個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某公司為生產(chǎn)某種產(chǎn)品添置了一套價(jià)值20000元的設(shè)備,而每生產(chǎn)一臺這種產(chǎn)品所需要的原材料和勞動力等成本合計(jì)100元,已知該產(chǎn)品的年銷售收入R(元)與年產(chǎn)量x(臺)的關(guān)系是R(x)=$\left\{\begin{array}{l}{500x-\frac{1}{2}{x}^{2}(0≤x≤500)}\\{125000(x>500)}\end{array}\right.$,x∈N.
(1)把該產(chǎn)品的年利潤y(元)表示為年產(chǎn)量x(臺)的函數(shù);
(2)當(dāng)年產(chǎn)量為多少臺時(shí),該產(chǎn)品的年利潤最大?最大年利潤為多少元?
(注:利潤=銷售收入-總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC中點(diǎn),SA=4,AB=2.
(1)求三棱錐A-SBD的體積
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{3}{{a}_{n}}$,求適合方程b1b2+b2b3+…+bnbn+1=$\frac{45}{32}$的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a>0,b>0,且a+b=1,則($\frac{1}{a}$+2)($\frac{1}$+2)的最小值是16;$\frac{ab}{2{a}^{2}+1}$的最大值是$\frac{\sqrt{3}-1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)是定義在R上的奇函數(shù)f(x)=f(x-3),且滿足f(-2)=-3,若數(shù)列{an}的前n項(xiàng)和Sn滿足$\frac{{S}_{n}}{n}=\frac{2{a}_{n}}{n}+1$,則f(a5)+f(a6)=3.

查看答案和解析>>

同步練習(xí)冊答案