分析 (1)利用“累乘求積”即可得出;
(2)利用“錯位相減法”、等比數(shù)列的前n項和公式即可得出.
解答 解:(1)∵a1=2,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{2n}{n-1}$(n≥2,n∈N*).
∴an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$
=$\frac{2n}{n-1}•\frac{2(n-1)}{n-2}$•…•$\frac{2×2}{1}×2$
=n•2n(n≥2),
當(dāng)n=1時,上式也成立.
∴an=n•2n.
(2)數(shù)列{an}的前n項和Sn=1×2+2×22+3×23+…+n•2n,
2Sn=22+2×23+…+(n-1)×2n+n×2n+1,
∴$-{S}_{n}=2+{2}^{2}+{2}^{3}$+…+2n-n×2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n×2n+1=(1-n)×2n+1-2,
∴Sn=(n-1)×2n+1+2.
點評 本題考查了“累乘求積”方法、“錯位相減法”、等比數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 3 | D. | -2或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com