19.設(shè)圓C:(x-k)2+(y-2k+1)2=1,則圓C的圓心軌跡方程為2x-y-1=0,若k=0時(shí),則直線l:3x+y-1=0截圓C所得的弦長(zhǎng)=$\frac{{2\sqrt{15}}}{5}$.

分析 設(shè)圓心C(x,y),則x=k,y=2k-1,消去k,可得圓C的圓心軌跡方程;求出圓心到直線的距離,即可求出直線l:3x+y-1=0截圓C所得的弦長(zhǎng).

解答 解:設(shè)圓心C(x,y),則x=k,y=2k-1,消去k,可得圓C的圓心軌跡方程為2x-y-1=0;
k=0時(shí),圓心(0,-1)到直線l:3x+y-1=0的距離d=$\frac{2}{\sqrt{10}}$,
∴直線l:3x+y-1=0截圓C所得的弦長(zhǎng)=2$\sqrt{1-\frac{4}{10}}$=$\frac{{2\sqrt{15}}}{5}$.
故答案為:2x-y-1=0;$\frac{{2\sqrt{15}}}{5}$.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow a}|$,則向量$\overrightarrow a+\overrightarrow b$與$\overrightarrow a$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)$f(x)=cos(2πx+\frac{π}{3})$,若對(duì)任意x∈R都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=|2x-a|+a,不等式f(x)>2的解集為{x|x<0或x>1}.
(1)求實(shí)數(shù)a的值;
(2)若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,a=6,b=7,c=8,則△ABC的面積等于$\frac{21\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)集合A={x|(x+3)(x-4)≤0},集合B={x|m-1≤x≤3m-2},若A∩B=B,則實(shí)數(shù)m的取值范圍為m≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)的定義域?yàn)?[{-\frac{1}{2},\frac{1}{2}}]$,求函數(shù)$y=f({{x^2}-x-\frac{1}{2}})$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且同時(shí)滿足下面兩個(gè)條件:
①對(duì)正數(shù)x,y都有f(xy)=f(x)+f(y);②f$(\frac{1}{2})$=1.
(1)求f(1)和f(4)的值;
(2)求滿足f(x)+f(5-x)>-2的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=|2x-7|+1.
(1)求不等式f(x)≤x的解集;
(2)若存在x使不等式f(x)-2|x-1|≤a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案