分析 (1)使用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{PQ},\overrightarrow{PG}$,根據(jù)P,Q,G三點(diǎn)共線得出λ,μ的關(guān)系;
(2)用λ表示出μ,令λ,μ∈(0,1)得出λ的范圍,則λμ可表示為關(guān)于λ的函數(shù),求出該函數(shù)的最值即可.
解答 解:(1)連結(jié)AG并延長(zhǎng)交BC于M,則M是BC的中點(diǎn),則$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,$\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$.
又$\overrightarrow{AP}=λ\overrightarrow{AB}$,$\overrightarrow{AQ}=μ\overrightarrow{AC}$,
∴$\overrightarrow{PQ}=\overrightarrow{AQ}-\overrightarrow{AP}$=$μ\overrightarrow{AC}-λ\overrightarrow{AB}$,$\overrightarrow{PG}=\overrightarrow{AG}-\overrightarrow{AP}$=($\frac{1}{3}-λ$)$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$.
∵P,G,Q三點(diǎn)共線,故存在實(shí)數(shù)t,使$\overrightarrow{PG}$=t$\overrightarrow{PQ}$,即($\frac{1}{3}-λ$)$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$=$μt\overrightarrow{AC}-λt\overrightarrow{AB}$.
∴$\left\{\begin{array}{l}{\frac{1}{3}-λ=-λt}\\{\frac{1}{3}=μt}\end{array}\right.$,兩式相除消去t得1-3λ=-$\frac{λ}{μ}$,即$\frac{1}{λ}+\frac{1}{μ}=3$.
(2)∵1-3λ=-$\frac{λ}{μ}$,∴$μ=\frac{λ}{3λ-1}$,
∵λ,μ∈(0,1),∴$\left\{\begin{array}{l}{0<λ<1}\\{0<\frac{λ}{3λ-1}<1}\end{array}\right.$,解得$\frac{1}{2}<λ<1$.∴$1<\frac{1}{λ}<2$.
∴λμ=$\frac{{λ}^{2}}{3λ-1}$=$\frac{1}{\frac{3}{λ}-\frac{1}{{λ}^{2}}}=\frac{1}{-(\frac{1}{λ}-\frac{3}{2})^{2}+\frac{9}{4}}$.
∴當(dāng)$\frac{1}{λ}=\frac{3}{2}$時(shí),λμ取得最小值$\frac{4}{9}$,當(dāng)$\frac{1}{λ}=1$或2時(shí),λμ取得最大值$\frac{1}{2}$.
∴λμ的取值范圍是[$\frac{4}{9}$,$\frac{1}{2}$).
點(diǎn)評(píng) 本題考查了平面向量的基本定理,不等式的解法,根據(jù)圖形尋找向量的關(guān)系是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90 | B. | 100 | C. | 110 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-∞,-1) | C. | (-3,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b | B. | a<b | C. | a=b | D. | 以上均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-6,0) | B. | [-6,0] | C. | (-1,0] | D. | [-1,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{5}{2}$ | C. | $\frac{2}{5}$ | D. | $-\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com