14.如圖,在正三棱柱ABC-A1B1C1中,AA1=AB=2,D為CC1的中點(diǎn).
(Ⅰ)求證:BC1⊥平面B1CD;
(Ⅱ)求二面角B-B1D-C的余弦值.

分析 (Ⅰ)建立空間坐標(biāo)系,利用向量法結(jié)合線面垂直的判定定理即可證明BC1⊥平面B1CD;
(Ⅱ)平面的法向量,利用向量法即可求二面角B-B1D-C的余弦值.

解答 證明:(Ⅰ)取AC的中點(diǎn)O,連接BO,取A1C1的中點(diǎn)O1,連接O1O,
以O(shè)為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系如圖,
則B($\sqrt{3}$,0,0),C(0,1,0),B1($\sqrt{3}$,0,2),C1(0,1,2),D(0,-1,1),
∵$\overrightarrow{B{C}_{1}}$=(-$\sqrt{3}$,1,2),$\overrightarrow{{B}_{1}C}$=(-$\sqrt{3}$,1,-2),$\overrightarrow{{B}_{1}D}$=(-$\sqrt{3}$,-1,-1),
∴$\overrightarrow{B{C}_{1}}$•$\overrightarrow{{B}_{1}C}$=(-$\sqrt{3}$,1,2)•(-$\sqrt{3}$,1,-2)=3+1-4=0,
$\overrightarrow{B{C}_{1}}$•$\overrightarrow{{B}_{1}D}$=(-$\sqrt{3}$,-1,-1)•(-$\sqrt{3}$,1,2)=3-1-2=0,
即BC1⊥B1C,BC1⊥B1D;
∴BC1⊥平面B1CD;
(Ⅱ)設(shè)平面BB1D的法向量為$\overrightarrow{m}$=(x,y,z),
$\overrightarrow{B{B}_{1}}$=(0,0,2),$\overrightarrow{BD}$=(-$\sqrt{3}$,-1,1),
由$\overrightarrow{m}$•$\overrightarrow{B{B}_{1}}$=0,$\overrightarrow{m}$•$\overrightarrow{BD}$=0,
得$\left\{\begin{array}{l}{2z=0}\\{-\sqrt{3}x-y+z=0}\end{array}\right.$,
令x=1,則y=-$\sqrt{3}$,z=0,
即 $\overrightarrow{m}$=(1,-$\sqrt{3}$,0),
由(Ⅰ)$\overrightarrow{B{C}_{1}}$=(-$\sqrt{3}$,1,2),為平面B1DC的一個法向量,
則cos<$\overrightarrow{m}$,$\overrightarrow{B{C}_{1}}$>=$\frac{\overrightarrow{m}•\overrightarrow{B{C}_{1}}}{|\overrightarrow{m}||\overrightarrow{B{C}_{1}}|}$=$\frac{-2\sqrt{3}}{2×2\sqrt{2}}$=-$\frac{\sqrt{6}}{4}$,
∵二面角B-B1D-C為銳二面角,
∴二面角B-B1D-C的余弦值為$\frac{\sqrt{6}}{4}$.

點(diǎn)評 本題主要考查線面垂直的判定,以及二面角的求解,建立空間坐標(biāo)系,利用向量法是解決二面角的常用方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠DAB為直角,AB∥CD,AD=CD=2AB,E,F(xiàn)分別為PC,CD的中點(diǎn).
(1)證明:AB⊥平面BEF;
(2)設(shè)PA=kAB,若平面EBD與平面BDC的夾角是大于45°的銳角,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$\frac{{x}^{2}}{2}+{y}^{2}=1$,過圓x2+y2=1上一點(diǎn)做圓的切線,交橢圓于A,B兩點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),求△ABF的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,過左焦點(diǎn)F的直線與橢圓相交于A、B兩點(diǎn),且有$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=2,則橢圓的長半軸長a的值為( 。
A.2$\sqrt{3}$B.4C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線y=-x+1與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點(diǎn),且以AB為直徑的圓經(jīng)過點(diǎn)O(其中O為坐標(biāo)原點(diǎn))當(dāng)橢圓C的離心率e$∈[\frac{1}{2},\frac{\sqrt{3}}{2}]$時橢圓C的長軸長的最大值是( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下圖是導(dǎo)函數(shù)y=f′(x)的圖象,則函數(shù)y=f(x)的極小值點(diǎn)為( 。
A.a,x3,x6B.x2C.x3,x6D.x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱AB上的動點(diǎn),設(shè)λ=$\frac{AE}{AB}$
(1)求證:DA1⊥ED1
(2)若直線DA1與平面CED1所成角為30°,求λ的值
(3)當(dāng)點(diǎn)E在棱AB上移動時,是否存在某個確定的位置使得平面A1DCB1與平面CED1所成二面角為60°,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{3x-2}{2x-1}$(x$≠\frac{1}{2}$).
(1)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+…+f($\frac{2014}{2015}$)的值;
(2)已知數(shù)列{an}滿足a1=2,an+1=f(an),求證:{$\frac{1}{{a}_{n}-1}$}是等差數(shù)列;
(3)求證:a1a2…an>$\sqrt{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過焦點(diǎn)與長軸垂直的弦長為1,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案