“a≤3”是“函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:簡(jiǎn)易邏輯
分析:根據(jù)函數(shù)單調(diào)性的性質(zhì)以及充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增,
則對(duì)稱(chēng)軸x=a≤3,
則“a≤3”是“函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增”的充要條件,
故選:C
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)函數(shù)的單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀(guān)察正弦函數(shù)y=sinx的圖象:①關(guān)于原點(diǎn)對(duì)稱(chēng);②關(guān)于x軸對(duì)稱(chēng);③關(guān)于y軸對(duì)稱(chēng);④有無(wú)數(shù)條對(duì)稱(chēng)軸.其中正確的命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Acos(ωx+φ)的圖象如圖所示,f(
π
2
)=-
2
3
,則f(-
π
2
)=( 。
A、-
2
3
B、
2
3
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象向右平移1個(gè)單位長(zhǎng)度后關(guān)于y軸對(duì)稱(chēng),當(dāng)x2>x1>-1時(shí),
f(x2)-f(x1)
x2-x1
>0恒成立,設(shè)a=f(-2),b=f(-
1
2
),c=f(3),則a,b,c的大小關(guān)系為( 。
A、c>a>b
B、c>b>a
C、a>c>b
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則它的體積是( 。
A、
2
3
π
B、8-
1
3
π
C、8-2π
D、8-
2
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx,下面結(jié)論錯(cuò)誤的是( 。
A、f(x)的最小正周期是2π
B、f(x)在[0,
π
2
]上單調(diào)遞增
C、f(x)[
π
4
,
3
4
π]上的最大值為
2
2
D、f(x)的值域?yàn)閇-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a是空間任意一條直線(xiàn),α是一個(gè)平面,則平面α內(nèi)一定存在直線(xiàn)與直線(xiàn)a( 。
A、相交B、平行C、異面D、垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx-φ)+1(A>0,ω>0,|φ|<π)在x=
π
3
處取得最大值為3,其圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為
π
2

(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈(0,
π
2
),則f(
α
2
)=2,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)在一個(gè)周期內(nèi)的部分函數(shù)圖象如圖所示.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,1]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案