A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | b>a>c |
分析 分別令g(x)=x-tanx,x∈(0,1),令f(x)=$\frac{sinx}{x}$,x∈(0,1),利用導(dǎo)數(shù)研究其單調(diào)性,即可得出.
解答 解:令g(x)=x-tanx,x∈(0,1),
g′(x)=1-$\frac{1}{co{s}^{2}x}$<0,∴函數(shù)g(x)在x∈(0,1)上單調(diào)遞減,
∴g(x)<g(0)=0,
∴x<tanx.
令f(x)=$\frac{sinx}{x}$,x∈(0,1),
∴f′(x)=$\frac{xcosx-sinx}{{x}^{2}}$=$\frac{cosx(x-tanx)}{{x}^{2}}$<0,
∴函數(shù)f(x)在x∈(0,1)單調(diào)遞減,
∵x>x3,
∴b>a,
又0<a<1,c=a3,
∴c<a.
綜上可得:b>a>c.
故選:D.
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{3}{4}x$ | B. | y=±$\frac{4}{3}x$ | C. | y=±$\frac{3}{5}x$ | D. | y=±$\frac{5}{4}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3\sqrt{3}}}{4}$ | B. | $\frac{{3\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{6}}}{4}$ | D. | $\frac{{3\sqrt{6}}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com