6.已知圓C:x2+y2-2x-4y+1=0上存在兩點(diǎn)關(guān)于直線l:x+my+1=0對(duì)稱,經(jīng)過點(diǎn)M(m,m)作圓C的切線,切點(diǎn)為P,則|MP|=3.

分析 由題意直線l:x+my+1=0過圓心C(1,2),從而得到m=-1.利用勾股定理求出|MP|.

解答 解:∵圓C:x2+y2-2x-4y+1=0上存在兩點(diǎn)關(guān)于直線l:x+my+1=0對(duì)稱,
∴直線l:x+my+1=0過圓心C(1,2),
∴1+2m+1=0.解得m=-1.
圓C:x2+y2-2x-4y+1=0,可化為(x-1)2+(y-2)2=4,圓心(1,2),半徑r=2,
∵經(jīng)過點(diǎn)M(m,m)作圓C的切線,切點(diǎn)為P,
∴|MP|=$\sqrt{(1+1)^{2}+(2+1)^{2}-4}$=3.
故答案為:3.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查圓的對(duì)稱性,考查勾股定理的運(yùn)用,正確運(yùn)用圓的對(duì)稱性是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,已知二面角α-l-β的大小為60°,點(diǎn)A∈α,點(diǎn)B是點(diǎn)A在平面β內(nèi)的射影,且AB=2,則點(diǎn)B到平面α的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C1:ρ=3$\sqrt{2}$和曲線C2:ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$,則C1上到C2的距離等于$\sqrt{2}$的點(diǎn)的個(gè)數(shù)有幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.方程($\frac{1}{2}$)x=|lgx|兩根為x1,x2,且x1•x2滿足關(guān)系式為(  )
A.x1x2>1B.0<x1x2<1C.x1x2=1D.x1x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知△ABC中,A+B=3C,且△ABC的外接圓面積為2π,則△ABC面積的最大值為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知正方體ABCD-A'B'C'D'的棱長(zhǎng)為1,下列說法:
①對(duì)角線AC'被平面A'BD和平面B'CD'三等分;
②以正方體的頂點(diǎn)為頂點(diǎn)的四面體的體積都是$\frac{1}{6}$;
③正方體的內(nèi)切球,與各條棱相切的球,外接球的表面積之比為1:2:3;
④正方體與以A為球心,1為半徑的球的公共部分的體積為$\frac{π}{3}$;
則正確的是①③.(寫出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓O:x2+y2=4交x軸于A,B兩點(diǎn),點(diǎn)P是直線x=4上一點(diǎn),直線PA,PB分別交圓O于點(diǎn)N,M.
(1)若點(diǎn)N(0,2),求點(diǎn)M的坐標(biāo);
(2)探究直線MN是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知圓C:(x-2$\sqrt{2}$)2+(y-1)2=1和兩點(diǎn)A(-t,0)、B(t,0)(t>0),若圓C上存在點(diǎn)P,使得∠APB=90°,則t的最小值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.求函數(shù)y=ln(x2+1)的拐點(diǎn)及凹凸區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案