12.已知角α是直線2x+y+1=0的傾斜角,那么tan(α-$\frac{π}{4}$)的值是( 。
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

分析 利用直線的傾斜角和斜率的關(guān)系求得tanα的值,再利用兩角差的正切公式求得tan(α-$\frac{π}{4}$)的值.

解答 解:∵角α是直線2x+y+1=0的傾斜角,∴tanα=-2,
那么tan(α-$\frac{π}{4}$)=$\frac{tanα-tan\frac{π}{4}}{1+tanα•tan\frac{π}{4}}$=$\frac{-2-1}{1+(-2)•1}$=3,
故選:D.

點(diǎn)評 本題主要考查直線的傾斜角和斜率,兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的點(diǎn)關(guān)于實(shí)軸對稱,z1=1+i,則$\frac{z_1}{z_2}$=( 。
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若p=$\sqrt{a+4}$+$\sqrt{a+5}$,q=$\sqrt{a+3}$+$\sqrt{a+6}$(a≥0),則p、q的大小關(guān)系是(  )
A.p<qB.p=qC.p>qD.由a的取值確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.有30袋長富牛奶,編號為1至30,若從中抽取6袋進(jìn)行檢驗(yàn),則用系統(tǒng)抽樣確定所抽的編號為( 。
A.3,6,9,12,15,18B.4,8,12,16,20,24
C.2,7,12,17,22,27D.6,10,14,18,22,26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將一枚質(zhì)地均勻的骰子先后拋擲兩次,若第一次朝上一面的點(diǎn)數(shù)為a,第二次朝上一面的點(diǎn)數(shù)為b,則函數(shù)y=ax2-2bx+1在(-∞,2]上為減函數(shù)的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S8>S9>S7,給出下列四個命題:
①d<0; 
②S16<0; 
③數(shù)列{Sn}中的最大項(xiàng)為S15;
④|a8|>|a9|.
其中正確命題有①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)復(fù)數(shù)z滿足(1-i)z=2i,則z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某校6名同學(xué)進(jìn)入演講比賽的終極PK,要求安排選手A不是第一個上場也不是最后一個,選手B和C必須相鄰則不同排法的種數(shù)是144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),有Cn+1m種取法.在這Cn+1m種取法中,可分兩類:一類是取出的m個球全部為白球,有C10Cnm種取法;另一類是取出1個黑球、m-1個白球,有C11Cnm-1種取法,所以有式子:C10Cnm+C11Cnm-1=Cn+1m成立.根據(jù)上述思想方法化簡下列式子:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk-1•Cnm-k+1+Cnm-k=${C}_{n+k}^{m}$(1≤k<m≤n,k,m,n∈N).

查看答案和解析>>

同步練習(xí)冊答案