11.若x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-y+4≥0\\ 0≤x≤4\end{array}\right.$,則z=3x-y的最小值是(  )
A.-5B.-4C.-3D.-2

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x+y≥0\\ x-y+4≥0\\ 0≤x≤4\end{array}\right.$作出可行域如圖,

化z=3x-y為y=3x-z,
由圖可知,當(dāng)直線y=3x-z過A(0,4)時(shí),直線在y軸上的截距最大,z有最小值.
∴zmax=3×0-4=-4.
故選:B.

點(diǎn)評(píng) 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a=$\frac{1}{2}$,b=$\frac{{{{log}_2}3}}{3}$,$c={log_{\frac{1}{2}}}$3,則a,b,c的大小關(guān)系為b>a>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知△ABC的內(nèi)角為A、B、C,其對(duì)邊分別為a、b、c,B為銳角,向量$\overrightarrow{m}$=(2sinB,-$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos2$\frac{B}{2}$-1),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)求角B的大小;
(2)如果b=2,求S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)O是坐標(biāo)原點(diǎn),過點(diǎn)O,F(xiàn)的圓與拋物線C的準(zhǔn)線相切,且該圓的面積為36π,則拋物線的方程為y2=16x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,已知∠ACB=90°,CA=3,CB=4,點(diǎn)E是邊AB的中點(diǎn),則$\overrightarrow{CE}$•$\overrightarrow{AB}$=( 。
A.2B.$\frac{7}{2}$C.$\sqrt{7}$D.-$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知各項(xiàng)都不相等的等差數(shù)列{an}的前7項(xiàng)和為70,且a3為a1和a7的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn+1-bn=an,n∈N*且b1=2,求數(shù)列$\{\frac{1}{b_n}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.長方體ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,則四面體A1BCD的體積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線和離心率為sin$\frac{π}{4}$的橢圓有相同的焦點(diǎn)F1,F(xiàn)2,若cos∠F1PF2=$\frac{1}{2}$,則雙曲線的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=sin2x+2sinxcosx-cos2x,x∈R.求:
(Ⅰ) 函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若$x∈[{0,\frac{π}{2}}]$,求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案