18.在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,AC⊥FB.
(1)求三棱錐A-BCF的體積.
(2)線段AC上是否存在點(diǎn)M,使得EA∥平面FDM?證明你的結(jié)論.

分析 (1)根據(jù)線面垂直的判定定理證明AC⊥平面FBC,F(xiàn)C⊥平面ABCD,再利用體積公式求解即可;
(2)根據(jù)線面平行的判定定理即可證明.

解答 解:(1)在△ABC中,
因?yàn)锳C=$\sqrt{3}$,AB=2,BC=1,
所以AC⊥BC,∠ABC=60,∠ADC=120°.
在△ADC中,由余弦定理可得DC=1,
又因?yàn)锳C⊥FB,BC∩FB=B,
所以AC⊥平面FBC.
因?yàn)镕C?平面FBC,
所以AC⊥FC,
因?yàn)镃DEF為正方形,
所以DC⊥FC,F(xiàn)C=1,
因?yàn)锳C∩DC=C,
所以FC⊥平面ABCD,即FC⊥BC,
所以VA-FBC=$\frac{1}{3}AC•{S}_{△FBC}$=$\frac{1}{3}×\sqrt{3}×\frac{1}{2}×1×1$=$\frac{\sqrt{3}}{6}$;
(2)M為線段AC的中點(diǎn),EA∥平面FDM.
連結(jié)CE,與DF交于點(diǎn)N,連接MN.
因?yàn)镃DEF為正方形,所以N為CE中點(diǎn).
在△ACE中,EA∥MN.                                         
因?yàn)镸N?平面FDM,EA?平面FDM,
所以 EA∥平面FDM.

點(diǎn)評(píng) 本題主要考查空間直線和平面平行和垂直的判定,考查體積的計(jì)算,要求熟練掌握相應(yīng)的判定定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD 是以AD為底的等腰三角形.
(Ⅰ)證明:AD⊥PB;
(Ⅱ)若四棱錐P-ABCD的體積等于$\frac{3}{2}$,試求PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若無重復(fù)數(shù)字的三位數(shù)滿足條件:①個(gè)位數(shù)字與十位數(shù)字之和為奇數(shù),②所有位的數(shù)字和為偶數(shù).則這樣的三位數(shù)的個(gè)數(shù)是(  )
A.540B.480C.360D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體三視圖如下,圖中三個(gè)等腰三角形的直角邊長(zhǎng)都是2,該幾何體的體積為( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知等差數(shù)列{an}中,a3=6,a6=3,則a9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=ex,g(x)=x-m(m∈R),設(shè)h(x)=f(x)•g(x).
(Ⅰ)求h(x)在[0,1]上的最大值.
(Ⅱ)當(dāng)m=0時(shí),試比較ef(x-2)與g(x)的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平行四邊形ABCD中∠DAB=60°AB=2,AD=4,將△ABC沿BD折起到△EBD的位置.
(Ⅰ)求證:BD⊥平面CDE;
(Ⅱ)∠CDE取何值時(shí),三棱E-ABD的體積取最大值?并求此時(shí)三棱E-ABD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,則輸出的i的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若滿足條件$\left\{\begin{array}{l}x-y+2≥0\\ x+y-2≥0\\ kx-y-2k+1≥0\end{array}\right.$的點(diǎn)P(x,y)構(gòu)成三角形區(qū)域,則實(shí)數(shù)k的取值范圍是(-∞,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案