6.(a$\sqrt{x}$-$\frac{1}{\root{3}{x}}$)10展開式的常數(shù)項是840,x5的系數(shù)是32.

分析 在二項式展開式的通項公式中,令x的冪指數(shù)等于零,可得常數(shù)項,再根據(jù)常數(shù)項是840求得a,再利用通項公式求得x5的系數(shù).

解答 解:(a$\sqrt{x}$-$\frac{1}{\root{3}{x}}$)10展開式的通項公式為Tr+1=${C}_{10}^{r}$•a10-r•(-1)r•${x}^{5-\frac{5r}{6}}$,
令5-$\frac{5r}{6}$=0,求得r=6,故展開式的常數(shù)項是${C}_{10}^{6}$•a4=840,求得a=±$\sqrt{2}$.
令5-$\frac{5r}{6}$=5,求得r=0,故展開式的x5的系數(shù)是a10=25=32,
故答案為:32.

點評 本題主要考查二項式定理的應用,二項式展開式的通項公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面四邊形ABCD內接于圓O,AC是圓O的一條直徑,PA⊥平面ABCD,PA=AC=2,E是PC的中點,∠DAC=∠AOB
(1)求證:BE∥平面PAD;
(2)若二面角P-CD-A的正切值為2,求直線PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.為了得到函數(shù)y=lg$\frac{x+3}{10}$的圖象,只需把函數(shù)y=lgx的圖象上所有的點( 。
A.向左平移3,向上平移1個單位B.向右平移3,向上平移1個單位
C.向左平移3,向下平移1個單位D.向右平移3,向下平移1個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,四棱錐S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC中點,SA=4,AB=2.
(1)求三棱錐A-SBD的體積
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項公式;
(2)設數(shù)列{bn}滿足bn=$\frac{3}{{a}_{n}}$,求適合方程b1b2+b2b3+…+bnbn+1=$\frac{45}{32}$的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設等差數(shù)列{an}的公差為d,若數(shù)列{2${\;}^{{a}_{1}{a}_{n}}$}為遞減數(shù)列,則a1d<0(填“>”或“<”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知a>0,b>0,且a+b=1,則($\frac{1}{a}$+2)($\frac{1}$+2)的最小值是16;$\frac{ab}{2{a}^{2}+1}$的最大值是$\frac{\sqrt{3}-1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在銳角三角形△ABC中,已知a=6,c=2$\sqrt{3}$,△ABC的面積為3$\sqrt{3}$,則∠B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)y=$\frac{2+sin2x}{2-2sin2x}$的最小值為0.

查看答案和解析>>

同步練習冊答案