9.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,DM⊥PC,垂足為M.
(1)求證:BD⊥平面PAC.
(2)求證:平面MBD⊥平面PCD.

分析 (1)證明BD垂直于平面PAC中兩條相交直線,即可證明BD⊥平面PAC.
(2)證明PC⊥平面DBM,即可證明平面MBD⊥平面PCD.

解答 證明:(1)連結(jié)AC,
∵底面ABCD是正方形,
∴BD⊥AC,
∵PA⊥底面ABCD,BD?平面ABCD,
∴PA⊥BD,
∵PA∩AC=A,∴BD⊥平面PAC.
(2)由(1)知BD⊥平面PAC,
∵PC?平面PAC,
∴BD⊥PC,
∵DM⊥PC,BD∩DM=D,
∴PC⊥平面DBM,
∵PC?平面PDC,
∴平面MBD⊥平面PCD.

點(diǎn)評 本題考查平面與平面垂直的判定,考查線面垂直,考查學(xué)生分析解決問題的能力,正確證明線面垂直是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在正方體ABCD-A1B1C1D1中,E是AB的中點(diǎn),且正方體棱長為2,則異面直線DE與B1C的夾角的余弦值為( 。
A.$\frac{\sqrt{10}}{10}$B.-$\frac{\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{5}$D.-$\frac{\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}的前n項(xiàng)和Sn=10n-n2,數(shù)列{bn}的每一項(xiàng)都有bn=|an|,則數(shù)列{bn}的前10項(xiàng)和T10=50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)y=loga(x+b)(a>0,a≠1)的圖象過兩點(diǎn)(-1,0)和(0,$\frac{1}{2}$),則實(shí)數(shù)a=4,b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知三棱錐P-ABC,在底面△ABC中,∠A=60°,$BC=\sqrt{3}$,PA⊥面ABC,PA=2,則此三棱錐的外接球的體積為(  )
A.$\frac{{8\sqrt{2}}}{3}π$B.$4\sqrt{3}π$C.$\frac{{4\sqrt{2}π}}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)A={y|y=x2+1,x∈R},$B=\left\{{x\left|y\right.=\left.{\sqrt{x-3}}\right\}}\right.$,則A∩B=[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$|{\overrightarrow{\;a\;}}|=3$,$|{\overrightarrow{\;b\;}}|=4$,
(1)若$({\overrightarrow{\;a\;}+2\overrightarrow{\;b\;}})•({2\overrightarrow{\;a\;}-\overrightarrow{\;b\;}})=-20$,求$\overrightarrow{\;a\;}$與$\overrightarrow{\;b\;}$的夾角;
(2)若$\overrightarrow{\;a\;}$與$\overrightarrow{\;b\;}$的夾角為60°,試確定實(shí)數(shù)k,使$k\overrightarrow{\;a\;}+\overrightarrow{\;b\;}$與$\overrightarrow{\;a\;}-\overrightarrow{\;b\;}$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了調(diào)查某高中學(xué)生每天的睡眠時間,現(xiàn)隨機(jī)對20名男生和20名女生進(jìn)行問卷調(diào)查,結(jié)果如下:
女生:
睡眠時間(小時)[4,5)[5,6)[6,7)[7,8)[8,9]
人數(shù)24842
男生:
睡眠時間(小時)[4,5)[5,6)[6,7)[7,8)[8,9]
人數(shù)15653
(1)現(xiàn)把睡眠時間不足5小時的定義為“嚴(yán)重睡眠不足”,從睡眠時間不足6小時的女生中隨機(jī)抽取2人,求此2人中恰有一人為“嚴(yán)重睡眠不足”的概率;
(2)完成下面2×2列聯(lián)表,并回答是否有90%的把握認(rèn)為“睡眠時間與性別有關(guān)”?
睡眠時間少于7小時睡眠時間不少于7小時合計
男生
女生
合計
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在一個直角邊長為10m的等腰直角三角形ABC的草地上,鋪設(shè)一個也是等腰直角三角形PQR的花地,要求P,Q,R三點(diǎn)分別在△ABC的三條邊上,且要使△PQR的面積最小,現(xiàn)有兩種設(shè)計方案:
方案-:直角頂點(diǎn)Q在斜邊AB上,R,P分別在直角邊AC,BC上;
方案二:直角頂點(diǎn)Q在直角邊BC上,R,P分別在直角邊AC,斜邊AB上.請問應(yīng)選用哪一種方案?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案