A. | $\sqrt{2}$ | B. | 4 | C. | 2 | D. | $2\sqrt{2}$ |
分析 畫出滿足條件的平面區(qū)域,求出角點的坐標,結(jié)合圖象得到$\frac{1}{a}$+$\frac{1}$=1,根據(jù)基本不等式的性質(zhì)求出a+b的最小值即可.
解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{x-y=0}\\{2x-y-1=0}\end{array}\right.$,解得A(1,1),
由z=$\frac{x}{a}$+$\frac{y}$(a,b為正數(shù))得:y=-$\frac{a}$x+bz,-$\frac{a}$<0
平移直線y=-$\frac{a}$x,結(jié)合圖象直線過A(1,1)時,
z最大,故$\frac{1}{a}$+$\frac{1}$=1,
∴(a+b)($\frac{1}{a}$+$\frac{1}$)=2+$\frac{a}$+$\frac{a}$≥2+2$\sqrt{\frac{a}•\frac{a}}$=4,
當且僅當a=b=2時“=”成立,
故選:B.
點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 1+$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | ±1 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | .1 | B. | .2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com