3.若函數(shù)f(x)=cosx-x的零點在區(qū)間(k-1,k)(k∈Z)內,則k=1.

分析 函數(shù)f(x)=cosx-x在區(qū)間(0,1)上有零點,以及零點判定定理可得f(0)f(1)<0,解此不等式即可求得k的范圍.

解答 解:因為f(0)=cos0-0>0,f(1)=cos1-1<0,
所以由零點存在性定理可得函數(shù)f(x)=cosx-x的零點在區(qū)間(0,1)上,兩端點為連續(xù)整數(shù),
因為零點所在的一個區(qū)間(k-1,k)(k∈Z)是(0,1)
所以k=1.
故答案為:1.

點評 本題考查零點存在性定理,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.己知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點和短軸的兩個端點都圓x2+y2=1上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若斜率為k的直線經過點M(2,0),且與橢圓C相交于A,B兩點,試探討k為何值時,OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)f(x)同時滿足①對于定義域上的任意x,恒有f(x)+f(-x)=0;②對于定義域上的任意x1、x2,當x1≠x2時,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則稱函數(shù)f(x)為“理想函數(shù)”.給出下列三個函數(shù)中:(1)f(x)=$\frac{1}{x}$;(2)f(x)=x+1;(3)f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,能被稱為“理想函數(shù)”的有(3)(填相應的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知f(x)=$\frac{1-x}{1+x}$,x∈(-1,1).求證:
(1)f($\frac{1}{a}$)=-f(a)(a≠0);
(2)lgf(-a)=-lgf(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若a>0,b<0,c<0,則直線ax+by+c=0必不通過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)$y={log_{\frac{1}{2}}}(-{x^2}+1)$的單調遞增區(qū)間是( 。
A.(0,1)B.(-1,0)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知冪函數(shù)f(x)=xa的部分對應值如下表,則不等式|f(x)|≤2的解集是(0,4]

x

1
$\frac{1}{2}$
f(x)
1
$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)y=4x-${\;}^{\frac{1}{2}}$-3×2x+5(0≤x≤2)的值域是[$\frac{1}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知集合M={x|x2-4x+3<0},N={x|log2x<1},則M∪N=(0,3),M∩N=(1,2),∁RM=(-∞,1]∪[3,+∞).

查看答案和解析>>

同步練習冊答案