18.從1,2,3,…,n中這n個(gè)數(shù)中取m(m,n∈N*,3≤m≤n)個(gè)數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個(gè)數(shù)記為f(n,m),則f(20,5)等于40.

分析 f(20,5)表示從1,2,3,…,20中這20個(gè)數(shù)中取5(m,n∈N*)個(gè)數(shù)組成遞增等差數(shù)列的個(gè)數(shù),對(duì)公差d=1,2,3,4,分別討論即可得出.

解答 解:f(20,5)表示從1,2,3,…,20中這20個(gè)數(shù)中取5(m,n∈N*)個(gè)數(shù)組成遞增等差數(shù)列的個(gè)數(shù),
分別為:1,2,3,4,5;2,3,4,5,6;…,16,17,18,19,20,共有16個(gè);
1,3,5,7,9;…;12,14,16,18,20,共有12個(gè);
1,4,7,10,13;…,8,11,14,17,20,共有8個(gè);
1,5,9,13,17;…,4,8,12,16,20,共有4個(gè).
綜上共有:16+12+8+4=40個(gè).
故答案為:40.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其性質(zhì),考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.為了研究某種細(xì)菌在特定環(huán)境下,隨時(shí)間變化的繁殖情況,得到的實(shí)驗(yàn)數(shù)據(jù)如表,并由此計(jì)算得回歸直線方程為$\stackrel{∧}{y}$=0.85x-0.25,后來因工作人員不慎將如表中的實(shí)驗(yàn)數(shù)據(jù)c丟失.
天數(shù)t(天)34567
繁殖個(gè)數(shù)y(千個(gè))c344.56
則上表中丟失的實(shí)驗(yàn)數(shù)據(jù)c的值為2.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R).
(Ⅰ)若b=1,函數(shù)f(x)在[-1,1]的值域是[m,n],求函數(shù)h(a)=n-m的表達(dá)式;
(Ⅱ)令t=b-$\frac{a^2}{4}$,若存在實(shí)數(shù)c,使得|f(c)|≤1與|f(c+2)|≤1同時(shí)成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,某構(gòu)件是由編號(hào)1、2、…、k(k∈N*且k≥3)的有限個(gè)圓柱自下而上組成的,其中每一個(gè)圓柱的高與其底面圓的直徑相等,且對(duì)于任意兩個(gè)相鄰圓柱,上面圓柱的高是下面圓柱的高的一半,設(shè)編號(hào)1的圓柱的高為4.
(1)分別求編號(hào)1、編號(hào)2的圓柱的體積V1、V2;
(2)寫出編號(hào)n(n=1,2,…,k)的圓柱的體積Vn關(guān)于n的表達(dá)式(不必證明);
(3)求該構(gòu)件的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題是真命題;
②若x,y∈R,則“x≥2或y≥2”是“x2+y2≥4”的充分不必要條件;
③函數(shù)y=loga(x+1)+1(a>0且a≠0)的圖象必過點(diǎn)(0,1);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
其中正確的結(jié)論是( 。
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.三棱錐A-BCD中,AB=CD=2$\sqrt{2}$,AC=BD=AD=2$\sqrt{3}$,且$\overrightarrow{DB}$$•\overrightarrow{DC}$=4,則三棱錐A-BCD外接球的體積為( 。
A.B.$\frac{32}{3}$πC.$\frac{16}{3}$πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題P(n)滿足:①對(duì)任意的n∈N*,P(2n)是真命題;②假如P(n)(n∈N*,n>1)是真命題,則P(n-1)也是真命題.下列判斷正確的是(  )
A.對(duì)任意n∈N*,P(n)是真命題
B.對(duì)任意n∈N*,僅有P(2n)是真命題
C.對(duì)任意n∈N*,僅有P(2n)和P(2n-1)是真命題
D.對(duì)任意n∈N*,P(n)不是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.七個(gè)人排成一列做體操,其中:
(1)甲在中間的排法有多少種?
(2)甲在首位或末位的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2+2ax+2.
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)在區(qū)間[-3,3]上的最大值和最小值;
(2)設(shè)函數(shù)g(x)=x-1,當(dāng)x∈[-1,3]時(shí),恒有f(x)>g(x),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案