分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,進行平移即可得到結(jié)論.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
,
由$\left\{\begin{array}{l}{x=y}\\{x+y=4}\end{array}\right.$,解得A(2,2),
由z=x+2y,得y=-$\frac{1}{2}$x+$\frac{z}{2}$,
平移直線y=-$\frac{1}{2}$x+$\frac{z}{2}$,由圖象可知當(dāng)直線經(jīng)過點A,
直線的截距最大,此時z最大,
此時z=6,
故答案為:6.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{8}$) | B. | ($\frac{1}{4}$,0) | C. | (1,0) | D. | (0,$\frac{1}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,4) | B. | (-1,1) | C. | (-2,4) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2=8y | B. | x2=4y | C. | x2=-4y | D. | x2=-8y |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com