3.計算:sin$\frac{29π}{6}$+cos(-$\frac{29π}{3}$)-tan$\frac{25π}{4}$=-$\frac{\sqrt{3}+1}{2}$.

分析 利用誘導(dǎo)公式化簡后,根據(jù)特殊角的三角函數(shù)值即可求值得解.

解答 解:sin$\frac{29π}{6}$+cos(-$\frac{29π}{3}$)-tan$\frac{25π}{4}$=sin$\frac{5π}{6}$+cos$\frac{5π}{6}$-tan$\frac{π}{4}$=$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$-1=-$\frac{\sqrt{3}+1}{2}$.
故答案為:-$\frac{\sqrt{3}+1}{2}$.

點評 本題主要考查了誘導(dǎo)公式,特殊角的三角函數(shù)值的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=lnx+$\frac{1}{x}$-2 的零點個數(shù)為( 。
A.0個B.1個C.2 個D.3 個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a=0.71.3,b=30.2,c=log0.25,則a、b、c之間的大小關(guān)系為( 。
A.a<c<bB.c<b<aC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=-2x2+ax+1在($\frac{1}{2},+∞$)是減函數(shù),則a的取值范圍是( 。
A.($-∞,\frac{1}{2}$)B.(-∞,2]C.[4,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和Sn,a1=1,an≠0,且Sn=$\frac{1}{2}$anan+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)記bn=$\frac{1}{{a}_{n}{a}_{n+1}{a}_{n+2}}$,設(shè)Tn為數(shù)列bn的前n項和,且Tn<|x+m|+|x-3m|對任意實數(shù)x恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)α為銳角,若sin($\frac{π}{3}$-α)=$\frac{4}{5}$,則sin(2α+$\frac{π}{3}$)的值為$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,半圓O的直徑為2,A為直徑延長線上的一點,OA=2,B為半圓上任意一點,以AB為一邊作等邊三角形ABC,設(shè)∠AOB=α.問:當α取何值時,四邊形OACB面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\sqrt{2}$,a+1,2$\sqrt{2}$成等比數(shù)列,則a的值為( 。
A.-3B.1C.-1或3D.-3或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)=lnx,0<a<b,若$p=f(\sqrt{ab})$,$q=f(\frac{a+b}{2})$,r=$\frac{f(a)+f(b)}{2}$,則下列關(guān)系式中正確的是(  )
A.p=r<qB.q=r>pC.p=r>qD.q=r<p

查看答案和解析>>

同步練習(xí)冊答案