3.兩條相交或平行的直線可以確定一個平面.

分析 根據(jù)平面公理的推理,得出經(jīng)過兩條相交直線,或經(jīng)過兩條平行直線,有且只有一個平面.

解答 解:根據(jù)平面公理的推理,得:
經(jīng)過兩條相交直線,有且只有一個平面,
經(jīng)過兩條平行直線,有且只有一個平面,
所以,兩條相交或平行的直線可以確定一個平面.
故答案為:相交、平行.

點評 本題考查了平面公理的推論與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1與直線L:y=x+m相交于A,B兩點,O為坐標原點,則△AOB面積的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知方程ax2+bx+c=0(a≠0)有一非零根x1,方程-ax2+bx+c=0有一非零根x2
(1)令f(x)=$\frac{a}{2}$x2+bx+c,求證:f(x1)f(x2)<0
(2)證明:方程$\frac{a}{2}$x2+bx+c=0必有一根介于x1和x2之間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在△OAB中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,點M是AB的靠近B的一個三等分點,點N是OA的靠近A的一個四等分點,若OM與BN相交于點P,求$\overrightarrow{OP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=sin$(2x-\frac{π}{6})$圖象的對稱軸方程為x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,對稱中心坐標為($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z,最大值時x的集合為{x|x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=m(x-$\frac{1}{x}$)-2lnx(m∈R),g(x)=-$\frac{m}{x}$,若至少存在一個x0∈[1,e],使得f(x0)<g(x0)成立,則實數(shù)m的范圍是( 。
A.(-∞,$\frac{2}{e}$]B.(-∞,$\frac{2}{e}$)C.(-∞,0]D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=(m2+m-6)x2+(m-2)x+(n+7)為奇函數(shù),則m=2或-3,n=-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知x<$\frac{5}{4}$,求f(x)=4x-2+$\frac{1}{4x-5}$的最大值;
(2)已知x為正實數(shù)且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值;
(3)求函數(shù)y=$\frac{\sqrt{x-1}}{x+3+\sqrt{x-1}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A={(x,y)|y=3x-2},B={(x,y)|y=-x+10},求A∩B.

查看答案和解析>>

同步練習(xí)冊答案