分析 連接OC,在直角三角形ACB和ADC中,由條件可得∠DCA=∠CBA,又OB=OC,即∠CBA=∠BCO,推得OC⊥DE,ED為圓O的切線,由圓的切割線定理,可得CE2=BE•AE,計(jì)算可得圓的半徑為3,再由AD∥OC,運(yùn)用三角形相似的性質(zhì),對(duì)應(yīng)邊成比例,可得CD,AD,再由勾股定理,計(jì)算即可得到BC的長(zhǎng).
解答 解:連接OC,在直角三角形ACB和ADC中,
∠D=∠ACB,∠CAB=∠DAC,
可得∠DCA=∠CBA,
又OB=OC,即∠CBA=∠BCO,
又∠BCO+∠ACO=90°,
可得∠DCA+∠ACO=90°,
即有OC⊥DE,ED為圓O的切線,
由圓的切割線定理,可得CE2=BE•AE,
即有(6$\sqrt{2}$)2=6(6+AB),
解得AB=6,即圓的半徑為3,
由AD∥OC,可得$\frac{CD}{CE}$=$\frac{OA}{OE}$,
即為$\frac{CD}{6\sqrt{2}}$=$\frac{3}{9}$,即有CD=2$\sqrt{2}$,
又$\frac{AD}{OC}$=$\frac{AE}{OE}$,即為$\frac{AD}{3}$=$\frac{12}{9}$,
解得AD=4,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=2$\sqrt{6}$,
BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{36-24}$=2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查圓的切割線定理和三角形的相似的判定和性質(zhì)的運(yùn)用,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
物理 | 化學(xué) | 生物 | 信息技術(shù) | |
周二 | $\frac{3}{4}$ | $\frac{1}{2}$ | $\frac{2}{3}$ | $\frac{1}{4}$ |
周四 | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{2}$ |
周五 | $\frac{2}{3}$ | $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com