7.對(duì)任意正整數(shù)n,設(shè)an是方程x2+$\frac{x}{n}$=1的正根.求證:
(1)an+1>an;
(2)$\frac{1}{2{a}_{2}}$+$\frac{1}{3{a}_{3}}$+…+$\frac{1}{n{a}_{n}}$<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$.

分析 (1)解方程可得an=$\frac{\sqrt{1+4{n}^{2}}-1}{2n}$,再由分子有理化,結(jié)合$\frac{1}{2n}$,$\frac{1}{4{n}^{2}}$在n∈N*上遞減,即可得證;
(2)求出$\frac{1}{n{a}_{n}}$=$\frac{2}{\sqrt{1+4{n}^{2}}-1}$,分析法可得$\frac{2}{\sqrt{1+4{n}^{2}}-1}$<$\frac{1}{n-1}$,累加并運(yùn)用不等式的性質(zhì)即可得證.

解答 解:(1)an是方程x2+$\frac{x}{n}$=1的正根,
解得an=$\frac{\sqrt{1+4{n}^{2}}-1}{2n}$,
由分子有理化,可得an=$\frac{2n}{\sqrt{1+4{n}^{2}}+1}$
=$\frac{1}{\sqrt{1+\frac{1}{4{n}^{2}}}+\frac{1}{2n}}$,
由$\frac{1}{2n}$,$\frac{1}{4{n}^{2}}$在n∈N*上遞減,
可得an為遞增數(shù)列,
即為an+1>an;
(2)證明:由an=$\frac{\sqrt{1+4{n}^{2}}-1}{2n}$,可得
$\frac{1}{n{a}_{n}}$=$\frac{2}{\sqrt{1+4{n}^{2}}-1}$,
由$\frac{2}{\sqrt{1+4{n}^{2}}-1}$<$\frac{1}{n-1}$?2n-1<$\sqrt{1+4{n}^{2}}$
?1+4n2-4n<1+4n2?-4n<0,顯然成立,
即有$\frac{1}{2{a}_{2}}$+$\frac{1}{3{a}_{3}}$+…+$\frac{1}{n{a}_{n}}$<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n-1}$
<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$.

點(diǎn)評(píng) 本題考查數(shù)列的單調(diào)性的證明,考查不等式的證明,注意運(yùn)用放縮法,考查推理能力和運(yùn)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在等比數(shù)列{an}中,a1+a2+…+a6=10,$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_6}=5$,則a1•a2•…•a6=(  )
A.2B.8C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=(m+x)lnx在(1,f(1))處的切線(xiàn)與直線(xiàn)y=2x-4平行.
(1)求f(x)在區(qū)間[e,+∞)上的最小值;
(2)若對(duì)任意x∈(0,1),都有$\frac{1}{a}$f(x)+2-2x<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知全集U=R,集合A={x|y=$\sqrt{2-x}$},B={x|${2}^{-{x}^{2}+3x}$>1},則(∁UA)∩B=( 。
A.{x|2≤x<3}B.{x|2<x<3}C.{x|x≥3}D.{x|2<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.將一個(gè)圓錐沿母線(xiàn)剪開(kāi),其側(cè)面展開(kāi)圖是半徑為2的半圓,則原來(lái)的圓錐的高為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在邊長(zhǎng)為a的正方形ABCD中,剪下一個(gè)扇形和一個(gè)圓,如圖所示,分別作為圓錐的側(cè)面和底面,求所圍成的圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=x,則$f({-\frac{1}{2}})$=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)$f(x)=|lg({x-\frac{1}{2}})|-cosx$的零點(diǎn)的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)向量$\overrightarrow{{a}_{n}}$=(sin$\frac{nπ}{3}$,cos$\frac{nπ}{3}$),$\overrightarrow{_{n}}$=(sin$\frac{nπ}{4}$,cos$\frac{nπ}{4}$)(n∈N+),則$\sum_{n=1}^{12}$($\overrightarrow{{a}_{n}}$•$\overrightarrow{_{n}}$)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案