8.已知y=f(x)是開(kāi)口向上的二次函數(shù),且f(1+x)=f(1-x)恒成立,若f(x+1)<f(3x-2),則x的取值范圍是( 。
A.($\frac{3}{4}$,$\frac{3}{2}$)B.(-∞,$\frac{3}{4}$)∪($\frac{3}{2}$,+∞)C.(-$\frac{3}{2}$,-$\frac{3}{4}$)D.(-∞,-$\frac{3}{2}$)∪(-$\frac{3}{4}$,+∞)

分析 由恒等式得到對(duì)稱軸,由不等式得到自變量到對(duì)稱軸的距離關(guān)系,由此得到x的取值范圍.

解答 解:∵f(1+x)=f(1-x)恒成立,
∴f(x)的對(duì)稱軸是x=1,
∵f(x+1)<f(3x-2),
則|x+1-1|<|3x-2-1|,兩邊平方,得
(2x-3)(4x-3)>0
∴x<$\frac{3}{4}$或x>$\frac{3}{2}$
故選:B

點(diǎn)評(píng) 本題考查對(duì)稱軸,及自變量到對(duì)稱軸的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知一元二次不等式f(x)>0的解集為(-∞,1)∪(2,+∞),則不等式f(3x)≤0的解集為[0,${log}_{3}^{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求下列各條件下二次函數(shù)的表達(dá)式:
(1)函數(shù)最大值為2,圖象的頂點(diǎn)在直線y=x+1上,且經(jīng)過(guò)點(diǎn)(3,-1);
(2)圖象的頂點(diǎn)為(1,15),且與x軸兩個(gè)交點(diǎn)之間的距離為6;
(3)圖象的頂點(diǎn)為(1,15),它與x軸交于兩點(diǎn)(x1,0)和(x2,0),且x${\;}_{1}^{3}$+x${\;}_{2}^{3}$=32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列對(duì)應(yīng)中是集合A到B上的一一映射的是( 。
A.A=R,B=R,f:x→y=x2B.A=R,B=R,f:x→y=-$\root{3}{x}$
C.A=R,B=R,f:x→y=x6D.A={x|x≥0},B{y|y>0},f:x→y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x-1),若f(2)=2,則f(2018)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)=ex-x-1(e為自然對(duì)數(shù)的底數(shù)).
(1)求證:f(x)≥0恒成立;
(2)求證:($\frac{1}{2n}$)n+($\frac{3}{2n}$)n+($\frac{5}{2n}$)n+…+($\frac{2n-1}{2n}$)n<$\frac{\sqrt{e}}{e-1}$對(duì)一切正整數(shù)n均成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x|x+a|-$\frac{1}{2}$lnx.
(1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若a<0,討論函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.不等式(x-1)2(x+2)(x-3)≤0的解集是[-2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,A,B,C的對(duì)邊分別為a,b,c,若cosB=$\frac{1}{3}$,則tan2$\frac{A+C}{2}$+sin2$\frac{B}{2}$的值為( 。
A.$\frac{7}{3}$B.$\frac{17}{50}$C.$\frac{11}{3}$D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案