18.執(zhí)行如圖所示的偽代碼,當(dāng)輸入a,b的值分別為1,3時(shí),最后輸出的a的值為5.

分析 模擬程序的執(zhí)行過(guò)程,即可得出最后輸出的a值.

解答 解:執(zhí)行如圖所示的偽代碼,如下;
輸入a=1,b=3;
i=1≤2,a=1+3=4,b=4-3=1;
i=2≤2,a=4+1=5,b=5-1=4;
i=3>2,終止循環(huán),輸出a=5.
故答案為:5.

點(diǎn)評(píng) 本題考查了程序語(yǔ)言的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序的運(yùn)行過(guò)程,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.連續(xù)2次拋擲-枚骰子(六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).則事件“兩次向上的數(shù)字之和等于7”發(fā)生的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知拋物線y=ax2(a≠0)的準(zhǔn)線方程為y=-1,焦點(diǎn)坐標(biāo)為F(0,1).
(1)求拋物線的方程;
(2)設(shè)F是拋物線的焦點(diǎn),直線l;y=kx+b(k≠0)與拋物線相交于A,B兩點(diǎn),記AF,BF的斜率之和為m,求常數(shù)m,使得對(duì)于任意的實(shí)數(shù)k(k≠0),直線l恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知點(diǎn)A(-$\sqrt{3}$,2),B($\sqrt{3}$,0),且AB為圓C的直徑.
(1)求圓C的方程;
(2)設(shè)點(diǎn)P為圓C上的任意一點(diǎn),過(guò)點(diǎn)P作傾斜角為120°的直線l,且l與直線x=$\sqrt{3}$相交于點(diǎn)M,求|PM|的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.一個(gè)玩具盤(pán)由一個(gè)直徑為2米的半圓O和一個(gè)矩形ABCD構(gòu)成,AB=1米,如圖所示,小球從A點(diǎn)出發(fā)以大小為5v的速度沿半圓O軌道滾到某點(diǎn)E處,經(jīng)彈射器以6v的速度沿與點(diǎn)E切線垂直的方向彈射到落袋區(qū)BC內(nèi),落點(diǎn)記為F,設(shè)∠AOE=θ弧度,小球從A到F所需時(shí)間為T(mén).
(1)試將T表示為θ的函數(shù)T(θ),并寫(xiě)出定義域;
(2)求時(shí)間T最短時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的兩條漸近線與直線x=1圍成的三角形的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.為發(fā)展低碳經(jīng)濟(jì),保護(hù)環(huán)境,某企業(yè)在政府部門(mén)的支持下,新上了一個(gè)“工業(yè)廢渣處理再利用”的環(huán)保項(xiàng)目,經(jīng)測(cè)算,該項(xiàng)目每月的處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可以近似的表示為:
y=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-100{x}^{2}+7740x,x∈[120,160)}\\{\frac{1}{2}{x}^{2}-200x+80000,x∈[160,600)}\end{array}\right.$且每處理一噸“工業(yè)廢渣”,可得到能再利用的產(chǎn)品價(jià)值200元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.
(1)當(dāng)x∈[160,300)時(shí),判斷該項(xiàng)日能否獲利,如果獲利,求出最大利澗;加果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損;
(2)求該項(xiàng)目每月出力量為多少?lài)崟r(shí),每噸的平均處理成本最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,并且a2=2,S5=15,數(shù)列{bn}滿(mǎn)足:b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}$bn,記數(shù)列{bn}的前n項(xiàng)和為T(mén)n
(1)求數(shù)列{an},{bn}的通項(xiàng)公式及前n項(xiàng)和;
(2)記集合M={n|$\frac{2{S}_{n}(2-{T}_{n})}{n+2}$≥λ,n∈N+},若M中的元素個(gè)數(shù)為4,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.對(duì)于函數(shù)f(x)=log${\;}_{2}^{2}$x-a•log2x2,x∈[1,4],a∈R.
(1)求函數(shù)f(x)的最小值g(a);
(2)是否存在實(shí)數(shù)m、n,同時(shí)滿(mǎn)足以下條件:①m>n≥0;②當(dāng)函數(shù)g(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇-m,-n],若存在,求出所有滿(mǎn)足條件的m、n的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案