3.我們知道,對于指數(shù)函數(shù)f(x)=ax(a>0,a≠1)具有如下特征,對定義域R內(nèi)任意實數(shù)m,n,都有f(m+n)=f(m)•f(n),現(xiàn)請你寫出滿足如上特征的一個非指數(shù)函數(shù)的函數(shù)解析式:f(x)=a2x(a>0,a≠1).

分析 根據(jù)指數(shù)的運算,可判斷函數(shù)f(x)=a2x,(a>0,a≠1)滿足f(m+n)=f(m)•f(n).

解答 解:比如,f(x)=a2x(a>0,a≠1),則:
f(m+n)=a2(m+n),f(m)•f(n)=a2m•a2n=a2(m+n);
∴該函數(shù)滿足f(m+n)=f(m)f(n).
故答案為:f(x)=a2x,(a>0,a≠1).

點評 考查指數(shù)函數(shù)的定義,以及指數(shù)式的運算性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合A={1,3},B={0,1,a},A∪B={0,1,3},則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)$f(x)=sinωx-\sqrt{3}cosωx$,ω>0,x∈R,又f(x1)=2,f(x2)=0,且|x1-x2|的最小值為$\frac{3π}{2}$,則ω的值為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=e${\;}^{-\frac{1}{|x|}}$-ax2(其中e是自然對數(shù)的底數(shù)).
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)若f(x)≤0在定義域內(nèi)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若a=0,當x>0時,求證:對任意的正整數(shù)n都有f($\frac{1}{x}$)<n!x-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式$\frac{x+4}{x-3}$>0的解為{x|x<-4 或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$.
(1)寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2)解不等式f(1-x2)>f(2x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,a、b分別為角A、B的對邊,如果B=30°,C=105°,a=4,那么b=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x-aex,a∈R.
(Ⅰ)當a=1時,求曲線y=f(x)在點(0,f(0))處的切線的方程;
(Ⅱ)若曲線y=f(x)與x軸有且只有一個交點,求a的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=x3,請寫出曲線y=f(x)與y=g(x)最多有幾個交點.(直接寫出結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=2x2-mx+3在(-∞,2)上的減函數(shù),在(2,+∞)上是增函數(shù),則m的值為(  )
A.-2B.-8C.2D.8

查看答案和解析>>

同步練習(xí)冊答案