20.在直角坐標系中,A(-2,3),B(3,-2),沿x軸把直角坐標系折成120°的二面角,則AB的長度為(  )
A.$\sqrt{2}$B.4$\sqrt{2}$C.3$\sqrt{2}$D.2$\sqrt{11}$

分析 作AD⊥x軸,垂足為D,作CD⊥x軸,BC⊥y軸,交于點C,利用余弦定理,計算AC,利用勾股定理,計算AB.

解答 解:如圖所示,作AD⊥x軸,垂足為D,作CD⊥x軸,BC⊥y軸,交于點C,

則∠ADC=120°,AD=3,CD=2,BC=5,BC⊥AC
在△ADC中,由余弦定理可得AC2=9+4-2×3×2×cos120°=19
在△ABC中,AB=$\sqrt{19+25}$=2$\sqrt{11}$.
故選:D.

點評 本題考查空間距離的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某中學(xué)為了解初三年級學(xué)生“擲實心球”項目的整體情況,隨機抽取男、女生各20名進行測試,記錄的數(shù)據(jù)如下:

已知該項目評分標準為:
 男生投擲距離(米)[5.4,6.0)[6.0,6.6)[6.6,7.4)[7.4,7.8)[7.8,8.6)[8.6,10.0)[10.0,+∞)
 
 女生投擲距離(米)
 
[5.1,5.4)[5.4,5.6)[5.6,6.4)[6.4,6.8)[6.8,7.2)[7.2,7.6)[7.6,+∞)
 個人得分(分) 
 4 5 6 7 8 9 10
(Ⅰ)求上述20名女生得分的中位數(shù)和眾數(shù);
(Ⅱ)從上述20名男生中,有6人的投擲距離低于7.0米,現(xiàn)從這6名男生中隨機抽取2名男生,求抽取的2名男生得分都是4分的概率;
(Ⅲ)根據(jù)以上樣本數(shù)據(jù)和你所學(xué)的統(tǒng)計知識,試估計該年級學(xué)生實心球項目的整體情況.(寫出兩個結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=x2-x+7,求f′(4)=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某公司的組織結(jié)構(gòu)是:總經(jīng)理之下設(shè)執(zhí)行經(jīng)理、人事經(jīng)理和財務(wù)經(jīng)理.執(zhí)行經(jīng)理領(lǐng)導(dǎo)生產(chǎn)經(jīng)理、工程經(jīng)理、品質(zhì)管理經(jīng)理和物料經(jīng)理.生產(chǎn)經(jīng)理領(lǐng)導(dǎo)線長,工程經(jīng)理領(lǐng)導(dǎo)工程師,工程師管理技術(shù)員,物料經(jīng)理領(lǐng)導(dǎo)計劃員和倉庫管理員.用框圖表示這家公司的組織結(jié)構(gòu).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}和單調(diào)遞減數(shù)列{bn}(n∈N*),{bn}通項公式為bn=λn2+a7•n.若a3,a11是方程x2-x-2=0的兩根,則實數(shù)λ的取值范圍是( 。
A.(-∞,-3)B.$({-∞,-\frac{1}{6}})$C.$({-\frac{1}{6},+∞})$D.(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}({x}^{2}+2x+1)}}$的定義域為( 。
A.(-2,0)B.(-2,-1)∪(-1,0)C.(-∞,-2)∪(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.y=ln(4-2x)的定義域為{x|x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$),ω>0,f($\frac{π}{6}$)=f($\frac{π}{3}$),f(x)在區(qū)間($\frac{π}{6}$,$\frac{π}{3}$)有最小值無最大值,則?的值為( 。
A.$\frac{14}{3}$B.$\frac{13}{3}$C.$\frac{3}{14}$D.$\frac{3}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,$\overrightarrow{AB}$=(1,1),$\overrightarrow{n}$=(1,-1),$\overrightarrow{n}$•$\overrightarrow{AC}$=2,則$\overrightarrow{n}$•$\overrightarrow{BC}$=( 。
A.-2B.2C.0D.-2或2

查看答案和解析>>

同步練習(xí)冊答案