14.給出下列命題:
①若函數(shù)y=f(x)滿足f(x-1)=f(x+1),則函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;
②點(diǎn)(2,1)關(guān)于直線x-y+1=0的對(duì)稱點(diǎn)為(0,3);
③通過(guò)回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$可以估計(jì)和觀測(cè)變量的取值和變化趨勢(shì);
④正弦函數(shù)是奇函數(shù),f(x)=sin(x2+1)是正弦函數(shù),所以f(x)=sin(x2+1)是奇函數(shù),上述推理錯(cuò)誤的原因是大前提不正確.
其中真命題的序號(hào)是②③.

分析 模擬函數(shù)圖象的周期性,可判斷①;根據(jù)垂直平分線的幾何特征,可判斷②;根據(jù)回歸直線的實(shí)際意義,可判斷③;根據(jù)演繹推理及正弦函數(shù)的定義,可判斷④.

解答 解:若函數(shù)y=f(x)滿足f(x-1)=f(x+1),則函數(shù)f(x)是周期為2的周期函數(shù),但不一定具有對(duì)稱性,故①錯(cuò)誤;
點(diǎn)(2,1),(0,3)確定的直線斜率為-1,與直線x-y+1=0垂直,且中點(diǎn)(1,2)在直線x-y+1=0上,故點(diǎn)(2,1),(0,3)關(guān)于直線x-y+1=0的對(duì)稱,故②正確;
通過(guò)回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$可以估計(jì)和觀測(cè)變量的取值和變化趨勢(shì),故③正確;
正弦函數(shù)是奇函數(shù),f(x)=sin(x2+1)是正弦函數(shù),所以f(x)=sin(x2+1)是奇函數(shù),上述推理錯(cuò)誤的原因是小前提不正確,故④錯(cuò)誤.
故答案為;②③

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的對(duì)稱性,點(diǎn)的對(duì)稱變換,回歸分析,演繹推理等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=$\frac{{x}^{2}}{{e}^{|x|+1}}$(其中e為自然對(duì)數(shù)的底)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知直線(1+λ)x+(λ-1)y+2+2λ=0(λ≠±1)交橢圓$\frac{x^2}{16}+\frac{y^2}{12}$=1于A、B兩點(diǎn),橢圓的右焦點(diǎn)為F點(diǎn),則△ABF的周長(zhǎng)為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若△ABC中,三邊a,b,c滿足a:b:c=3:5:x,且∠C=120°,則x=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在直三棱柱ABC-A1B1 C1中,AC=2$\sqrt{2}$,AB=BC=BB1=2,N是BB1的中點(diǎn).
(I)求證:BC1⊥平面A1B1C;
(Ⅱ)求三棱錐C-A1B1N的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知正數(shù)x,y滿足x+y=1,則$\frac{4}{x+2}$$+\frac{1}{y+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.《九章算術(shù)》中的“竹九節(jié)”問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則該竹子最上面一節(jié)的容積為$\frac{13}{22}$升.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,y),且$\overrightarrow a∥\overrightarrow b$,則|3$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下面程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為8,12,則輸出的a=(  )
A.2B.0C.4D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案