20.函數(shù)f(x)=$\left\{{\begin{array}{l}{2x-{5^{\;}}(x≥2)}\\{f{{(x+2)}^{\;}}(x<2)}\end{array}}$,則f(-2)=-1.

分析 利用分段函數(shù)性質(zhì)求解.

解答 解:∵函數(shù)f(x)=$\left\{{\begin{array}{l}{2x-{5^{\;}}(x≥2)}\\{f{{(x+2)}^{\;}}(x<2)}\end{array}}$,
∴f(-2)=f(0)=f(2)=2×2-5=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知定義在R上的函數(shù)g(x)=f(x)-x3,且g(x)為奇函數(shù)
(1)判斷函數(shù)f(x)的奇偶性;
(2)若x>0時(shí),f(x)=2x,求當(dāng)x<0時(shí),函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}的遞項(xiàng)公式an=(-1)n•2n+n•cos(nπ),其前n項(xiàng)和為Sn,則S10等于687.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若直線經(jīng)過點(diǎn)A(2,-3)、B(1,4),則直線的斜截式方程為y=-7x+11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線l1:2x-y=4與直線l2:x-2y=-1相交,其交點(diǎn)P的坐標(biāo)為(  )
A.(2,1)B.$(\frac{7}{3},\frac{2}{3})$C.(1,1)D.(3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)y=x2-2ax+1(a∈R)的圖象如圖所示,則下列函數(shù)與它的圖象對(duì)應(yīng)正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos(α-β)=$\frac{1}{7}$,cos2α=-$\frac{11}{14}$,求證:α+β=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在求由曲線y=$\frac{1}{x}$與直線x=1,x=3,y=0所圍成圖形的面積時(shí),若將區(qū)間n等分,并用每個(gè)區(qū)間的右端點(diǎn)的函數(shù)值近似代替,則第i個(gè)小曲邊梯形的面積△Si約等于( 。
A.$\frac{2}{n+2i}$B.$\frac{2}{n+2i-2}$C.$\frac{2}{n(n+2i)}$D.$\frac{1}{n+2i}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tanα=3,則$\frac{4cosα-2sinα}{3cosα+sinα}$=$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案