10.已知tanα=3,則$\frac{4cosα-2sinα}{3cosα+sinα}$=$\frac{1}{3}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得所給式子的值.

解答 解:∵tanα=3,則$\frac{4cosα-2sinα}{3cosα+sinα}$=$\frac{4-2tanα}{3+tanα}$=$\frac{4-6}{3+3}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\left\{{\begin{array}{l}{2x-{5^{\;}}(x≥2)}\\{f{{(x+2)}^{\;}}(x<2)}\end{array}}$,則f(-2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.集合A={x|x2-x-6≤0},B={x|$\frac{2}{x-2}$<0},則∁R(A∩B)(-∞,-2)∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,已知∠A=60°,BC=3,AB=$\sqrt{6}$,則∠C=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\sqrt{\frac{1}{4}-{x}^{2}}$與y=$\frac{1}{2}$cos2πx的圖象交點(diǎn)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)y=-tan(x+$\frac{π}{6}$)+2的周期、定義域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=3,Sn+1-2Sn=1-n,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知tanα=3,求$\frac{2}{3}$sin2α+$\frac{1}{4}$cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin(3x+φ)(A>0.x∈(-∞,+∞),0<φ<π)在x=$\frac{π}{12}$時(shí)取得最大值4..
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若f($\frac{2}{3}$α+$\frac{π}{12}$)=$\frac{12}{5}$.求tan2α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案