如圖,將正分割成16個(gè)全等的小正三角形,在每個(gè)三角形的頂點(diǎn)各放置一個(gè)數(shù),使位于同一直線上的點(diǎn)放置的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別依次成等差數(shù)列,若頂點(diǎn)處的三個(gè)數(shù)互不相同且和為1,則所有頂點(diǎn)的數(shù)之和 .
5
解析試題分析:根據(jù)等差中項(xiàng)法分別求解n=2,3,4時(shí)的值,由此歸納出f(n)的值即可.解:由題意可得,(各點(diǎn)放的數(shù)用該點(diǎn)的坐標(biāo)表示)當(dāng)n=2時(shí),根據(jù)等差數(shù)列的性質(zhì)可得,A+B=2D,A+C=2E,B+C=2F,且A+B+C=1,2(D+E+F)=2(A+B+C)=2,D+E+F=1,∴f(2)=2= ,當(dāng)n=3時(shí),根據(jù)等差數(shù)列的性質(zhì)可得,A+B=D+E,A+C=I+H,B+C=F+G,且A+B+C=1,從而可得D+E+H+I+F+F=2(A+B+C)=2,同樣根據(jù)等差中項(xiàng)可得,M的數(shù)為 ,所以 ,依次可知結(jié)論為,那么可知頂點(diǎn)處的三個(gè)數(shù)互不相同且和為1,則n=5時(shí),所有頂點(diǎn)的數(shù)之和5,故答案為5.
考點(diǎn):數(shù)列的通項(xiàng)公式
點(diǎn)評(píng):本題目主要考查了數(shù)列的通項(xiàng)公式的求解在實(shí)際問題中的應(yīng)用,解題的關(guān)鍵是靈活利用等差中項(xiàng),進(jìn)行求解.考查了考試發(fā)現(xiàn)問題、解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
.根據(jù)下面一組等式
S1=1
S2=2+3=5
S3=4+5+6=15
S4=7+8+9+10=34
S5=11+12+13+14+15=65
S6=16+17+18+19+20+21=111
S7=22+23+24+25+26+27+28=175
… … … … … … … …
可得 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖. 其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以表示第幅圖的蜂巢總數(shù).則=_____;=___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
定義:對(duì)于各項(xiàng)均為整數(shù)的數(shù)列,如果(=1,2,3, )為完全平方數(shù),則稱數(shù)列具有“性質(zhì)”;不論數(shù)列是否具有“性質(zhì)”,如果存在數(shù)列與不是同一數(shù)列,且滿足下面兩個(gè)條件:
(1)是的一個(gè)排列;
(2)數(shù)列具有“性質(zhì)”,則稱數(shù)列具有“變換性質(zhì)”.
給出下面三個(gè)數(shù)列:
①數(shù)列的前項(xiàng)和;
②數(shù)列:1,2,3,4,5;
③數(shù)列:1,2,3,4,5,6,7,8,9,10,11.
具有“性質(zhì)”的為 ;具有“變換性質(zhì)”的為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前n項(xiàng)和記為,點(diǎn)(n,)在曲線()上
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
等差數(shù)列{an}的前n項(xiàng)和為Sn ,已知S10=0,S15 =25,則nSn 的最小值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com