已知向量
a
=(1,n),
b
=(-1,n),若2
a
+
b
b
垂直,則|
a
|=(  )
A、1
B、
2
C、
2
3
3
D、4
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:首先求出2
a
+
b
的坐標(biāo),然后按照向量的數(shù)量積的坐標(biāo)運算表示2
a
+
b
b
垂直,得到關(guān)于n的方程解之,然后求|
a
|的模.
解答: 解:∵向量
a
=(1,n),
b
=(-1,n),2
a
+
b
b
垂直
2
a
+
b
=(1,3n),∴(2
a
+
b
)•
b
=3n2-1=0,解得n=±
3
3
,
∴|
a
|=
1+n2
=
1+
1
3
=
2
3
3

故選:C.
點評:本題考查了向量的加減運算以及數(shù)量積的坐標(biāo)運算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-
1
x
(a∈R),若函數(shù)f(x)在區(qū)間[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2sinx+1的最大值、最小值和最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+
1
2|x|

(1)若f(x)=
5
2
,求x的值;
(2)若關(guān)于x的方程f(2x)+af(x)+4=0在x∈(0,+∞)上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Q為橢圓x2+2y2=98上一動點,P(0,5)為一定點,求點P到橢圓的最大和最小距離以及此時Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0).
(1)若f(-1)=0,試判斷函數(shù)f(x)零點的個數(shù);
(2)是否存在a,b,c∈R,F(xiàn)(x)同時滿足以下條件:
①當(dāng)x=-1時,函數(shù)有最小值0;
②?x∈R,都有0≤f(x)-x≤
1
2(x-1)
.若存在,求出a,b,c的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:如果x2+y2=0,則x,y都為0;命題q:如果a2>b2,則a>b.給出下列命題①p∧q②p∨q ③?p④?q,其中真命題是( 。
A、①②B、①③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U是實數(shù)集R,M={x||2x-3|≥4x},N={x|log
1
3
(x+2)≥0},則M∩N=( 。
A、{x|x≤-
1
2
}
B、{x|x≤-1}
C、{x|-
1
2
≤x≤-1}
D、{x|-2<x≤
1
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=(acos2x-3)sinx的最小值為-3,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案