華瑞公司招聘新員工時對每位報名者一次進(jìn)行A、B、C、D四個科目的考核.若有其中三科通過,予以錄取,考核時,發(fā)現(xiàn)能通過或無法通過時,考核結(jié)束.從以往經(jīng)驗看,每位報名者能通過A、B、C、D四個科目的概率都為
2
3
,A、B、C、D四個科目是否能通過是相互獨立的.
(1)求某人被考核了四個科目且予以錄用的概率;
(2)設(shè)ζ為某人參加招聘時被考核的科目數(shù)據(jù),求ζ的分布列與數(shù)學(xué)期望.
考點:離散型隨機(jī)變量的期望與方差,相互獨立事件的概率乘法公式
專題:概率與統(tǒng)計
分析:(Ⅰ)利用相互獨立事件的概率乘法公式能求出某人被考核了四個四個科目予以錄用的概率.
(Ⅱ)由題意知,ξ=2,3,4,分別求出相應(yīng)的概率,由此能求出ζ的分布列與數(shù)學(xué)期望.
解答: 解:(Ⅰ)某人被考核了四個四個科目予以錄用的概率為:
p=
C
2
3
(
2
3
)2×
1
3
×
2
3
=
8
27

(Ⅱ)由題意知,ξ=2,3,4,
則P(ξ=2)=
1
3
×
1
3
=
1
9
,
P(ξ=3)=
2
3
×
2
3
×
2
3
+
2
3
×
1
3
×
1
3
+
1
3
×
2
3
×
1
3
=
4
9
,
P(ξ=4)=
C
2
3
×(
2
3
)2×
1
3
=
4
9

∴ξ的分布列為:
 ξ 3 4
 P 
1
9
 
4
9
 
4
9
∴Eξ=
1
9
+3×
4
9
+4×
4
9
=
10
3
點評:本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時要認(rèn)真審題,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=lnx-2012},集合B={-2,-1,1,2},則A∩B=(  )
A、φ
B、{1,2}
C、{-1,-2}
D、{-2,-1,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我校從高一年級學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的數(shù)學(xué)競賽成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖估計我校數(shù)學(xué)競賽成績平均分;
(Ⅱ)我校高一(1)班有60名學(xué)生,根據(jù)頻率分布直方圖,從80分以上的學(xué)生中任取2名學(xué)生,記90分以上的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和為Sn,已知a1=
1
3
,且S1,2S2,3S3成等差數(shù)列.
(1)求an;
(2)設(shè)bn=
n
an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
xex+1
,討論函數(shù)f(x)的單調(diào)性,并求其最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,∠ACD=90°,∠BAC=∠CAD,PA⊥平面ABCD,E為PD的中點.
(1)求證:平面PAC⊥平面PCD;
(2)求證:CE∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
a2-1
(ax-a-x)(a>0且a≠1),判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,若a1=3,Sn和Sn+1滿足等式Sn+1=
n+1
n
Sn+n+1.
(Ⅰ)求證:數(shù)列{
Sn
n
}是等差數(shù)列;
(Ⅱ)若數(shù)列{bn}滿足bn=an•2 an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:
x
+
x+2
+
2x+4
=2x-4.

查看答案和解析>>

同步練習(xí)冊答案