19.正六邊形的中心和頂點共7個點,以其中3個點為頂點的三角形的個數(shù)為( 。
A.38B.35C.32D.6

分析 正六邊形的中心和頂點共7個點,選3個點的共有的方法減去在一條直線上的三點的個數(shù)即可.

解答 解:正六邊形的中心和頂點共7個點,選3個點的共有的方法是:C73=35
在一條直線上的三點有3個
符合題意的三角形有35-3=32個,
故選:C.

點評 本題考查組合及組合數(shù)公式,考查計算能力,邏輯思維能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線a不平行于平面α,則下列結(jié)論成立的是( 。
A.α內(nèi)的所有直線都與a異面B.α內(nèi)的直線都與a相交
C.α內(nèi)不存在與a平行的直線D.直線a與平面α有公共點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某大眾創(chuàng)業(yè)公司,2015年底共有科研人員10人,公司全年產(chǎn)品總產(chǎn)值500萬元,從2016年起該公司計劃產(chǎn)品的年產(chǎn)值每年增加100萬元,為擴大規(guī)模,科研人員每年凈增a人,設(shè)從2016年起的第x年(x∈N*,2016年為第一年),該公司科研人員人均產(chǎn)值y萬元,則y與x之間的函數(shù)關(guān)系式為$y=\frac{500+100x}{10+ax},x∈{N}^{*}$;為使該公司的人均產(chǎn)值每年都不低于前一年的人均產(chǎn)值,那么該公司每年增加的科研人員不能超過2人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在等差數(shù)列{an}中,已知a1=3,d=$\frac{1}{2}$,則S10=$\frac{105}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.袋A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是$\frac{1}{3}$,從B中摸出一個紅球的概率是P,若A、B兩個袋中球數(shù)之比1:2,將兩袋中的球裝在一起后,從中摸出一個紅球的概率是$\frac{4}{9}$.
(1)求P的值;
(2)從B中有放回地摸球,每次摸出一個,有3次摸到紅球即停止.
①求恰好摸5次停止的概率;
②記5次之內(nèi)(含5次)摸到紅球的次數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標系xOy中,圓C的極坐標方程為ρ=4,經(jīng)過點P(1,2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t為參數(shù)).
(I)寫出圓C的標準方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{4}$a(x-2)4+(x-2)2+a(x-2)(a≠0),函數(shù)f(x)與函數(shù)g(x)的圖象關(guān)于直線x=1對稱.
(1)求函數(shù)g(x).
(2)a≥2時,求證:函數(shù)g(x)在區(qū)間($\frac{a}{a+1}$,1)不單調(diào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=lnx-a,若f(x)<x2在(1,+∞)上恒成立,則實數(shù)a的取值范圍是(  )
A.[-1,+∞)B.(1,+∞)C.[1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知sin2α=$\frac{1}{4}$,$\frac{π}{4}$<α<$\frac{π}{2}$,則cos(α+$\frac{π}{4}$)=-$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案