分析 解法一(利用對立事件的概率):由于小球落入B袋情況簡單易求,記小球落入B袋中的概率P(B),有P(A)+P(B)=1求P(A),
解法二(直接法):由于小球每次遇到障礙物時,有一次向左和兩次向右或兩次向左和一次向右下落時小球?qū)⒙湎翧袋故有概率的乘法公式求解即可.
解答 解法一:記小球落入B袋中的概率P(B),則P(A)+P(B)=1,
由于小球每次遇到黑色障礙物時一直向左或者一直向右下落,小球?qū)⒙淙隑袋,
所以有P(B)=($\frac{1}{2}$)3+($\frac{1}{2}$)3=$\frac{1}{4}$,
∴P(A)=1-P(B)=$\frac{3}{4}$;
解法二:由于小球每次遇到障礙物時,有一次向左和兩次向右或兩次向左和一次向右下落時小球?qū)⒙湎翧袋.
∴P(A)=C31($\frac{1}{2}$)3+C32($\frac{1}{2}$)3=$\frac{3}{4}$;
故答案為:$\frac{3}{4}$
點評 本題考查利用相互獨立事件的概率乘法公式求概率,屬于概率中的基本題型.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{6}{11}$ | C. | $\frac{6}{13}$ | D. | 0或$\frac{6}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 7 | C. | 8 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com