A. | $\frac{x^2}{25}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | C. | $\frac{x^2}{25}-\frac{y^2}{9}=1$ | D. | $\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$ |
分析 由已知作出圖象,結(jié)合圖象得|NQ|-|NP|=6,Q(5,0),P(-5,0),|PQ|=10>6,由此能求出點(diǎn)N的軌跡.
解答 解:∵M(jìn)是圓P:(x+5)2+y2=36上一動(dòng)點(diǎn),點(diǎn)Q的坐標(biāo)為(5,0),線段MQ的垂直平分線交直線PM于點(diǎn)N,
∴|MN|=|NQ|,|NQ|-|NP|=|MP|,
∵M(jìn)是圓P:(x+5)2+y2=36上一動(dòng)點(diǎn),點(diǎn)Q的坐標(biāo)為(5,0),
∴|MP|=6,∴|NQ|-|NP|=6,
∵Q(5,0),∴P(-5,0),|PQ|=10>6,
∴點(diǎn)N的軌跡為雙曲線,a=3,c=5,b=4,
∴點(diǎn)N的軌跡方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.
故選:D.
點(diǎn)評(píng) 本題主要考查了軌跡方程的問(wèn)題,解題的關(guān)鍵是利用了雙曲線的定義求得軌跡方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k>0或k≤-9 | B. | k≥1 | C. | -9≤k≤1 | D. | 0≤k≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0)∪(1,2) | B. | [0,+∞) | C. | (-∞,1]∪[2,+∞) | D. | [0,1]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈R,使得lnx0+x03+2x02+4=0 | B. | ?x0∈R,使得ex0+x03+2x02+4≠0 | ||
C. | ?x∈R,使得ex+x3+2x2+4=0 | D. | ?x0∈R,使得ex0+x03+2x02+4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $?{x_0}∉{C_R}Q,x_0^2∈Q$ | B. | $?{x_0}∈{C_R}Q,x_0^2∉Q$ | ||
C. | $?{x_0}∈{C_R}Q,x_0^2∈Q$ | D. | $?{x_0}∈{C_R}Q,x_0^2∉Q$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈R,3x2+1≤0 | B. | ?x∈R,3x2+1≤0 | C. | ?x∈R,3x2+1<0 | D. | ?x∈R,3x2+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(1,\frac{5}{3}]$ | B. | (0,1) | C. | (1,+∞) | D. | $[\frac{5}{3},2)$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com