4.橢圓C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn)為F1,F(xiàn)2,M為橢圓C上的動點(diǎn),則$\frac{1}{M{F}_{1}}$+$\frac{1}{M{F}_{2}}$的最小值為$\frac{2}{5}$.

分析 由$\frac{1}{M{F}_{1}}$+$\frac{1}{M{F}_{2}}$=$\frac{M{F}_{1}+M{F}_{2}}{M{F}_{1}•M{F}_{2}}$=$\frac{10}{M{F}_{1}•M{F}_{2}}$,MF1•MF2的最大值為a2=25,能求出$\frac{1}{M{F}_{1}}$+$\frac{1}{M{F}_{2}}$的最小值.

解答 解:∵橢圓C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn)為F1,F(xiàn)2,M為橢圓C上的動點(diǎn),
∴$\frac{1}{M{F}_{1}}$+$\frac{1}{M{F}_{2}}$=$\frac{M{F}_{1}+M{F}_{2}}{M{F}_{1}•M{F}_{2}}$=$\frac{10}{M{F}_{1}•M{F}_{2}}$,
∵M(jìn)F1•MF2的最大值為a2=25,
∴$\frac{1}{M{F}_{1}}$+$\frac{1}{M{F}_{2}}$的最小值dmin=$\frac{10}{25}$=$\frac{2}{5}$.
故答案為:$\frac{2}{5}$.

點(diǎn)評 本題考查代數(shù)式的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}:$\frac{1}{3}$,-$\frac{1}{2}$,$\frac{3}{5}$,-$\frac{2}{3}$,…
(1)寫出數(shù)列的通項(xiàng)公式;
(2)計(jì)算a10,a15,a2n+1;
(3)證明;數(shù)列{|an|}是遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若鈍角三角形ABC的三個(gè)內(nèi)角滿足:∠A<∠B<∠C,2∠B=∠A+∠C,且最大邊長與最小邊長的比值為m,則m的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等比數(shù)列{an}中,an<an+1(n∈N*),且a1+an=66,a1•an=128,前n項(xiàng)的和Sn=126,n求公比q及項(xiàng)數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知cos($\frac{1}{2}$x+$\frac{π}{3}$)>$\frac{\sqrt{3}}{2}$,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知O(0,0,0),A(2,1,1),B(1,1,-1),點(diǎn)P(λ,1,3)在平面OAB內(nèi),則λ=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系中,動點(diǎn)P到點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離多1,記點(diǎn)P的軌跡為曲線C,給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于x軸對稱;
③曲線C的軌跡是拋物線.
其中,所有正確結(jié)論的序號是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,以|F1F2|為直徑的圓與雙曲線漸近線的一個(gè)交點(diǎn)為(1,2),則此雙曲線方程為( 。
A.$\frac{x^2}{4}-{y^2}=1$B.${x^2}-\frac{y^2}{2}=1$C.${x^2}-\frac{y^2}{4}=1$D.$\frac{x^2}{2}-{y^2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.有下列四個(gè)命題:
①若xy>0,則x,y同正或同負(fù); 
②周長相等的兩個(gè)三角形全等;
③若m≤0,則x2-2x+m=0有實(shí)數(shù)解; 
④若A∪B=B,則A⊆B.
其中真命題個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案